skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Membrane potential drives the exit from pluripotency and cell fate commitment via calcium and mTOR
Abstract Transitioning from pluripotency to differentiated cell fates is fundamental to both embryonic development and adult tissue homeostasis. Improving our understanding of this transition would facilitate our ability to manipulate pluripotent cells into tissues for therapeutic use. Here, we show that membrane voltage (Vm) regulates the exit from pluripotency and the onset of germ layer differentiation in the embryo, a process that affects both gastrulation and left-right patterning. By examining candidate genes of congenital heart disease and heterotaxy, we identifyKCNH6, a member of the ether-a-go-go class of potassium channels that hyperpolarizes the Vmand thus limits the activation of voltage gated calcium channels, lowering intracellular calcium. In pluripotent embryonic cells, depletion ofkcnh6leads to membrane depolarization, elevation of intracellular calcium levels, and the maintenance of a pluripotent state at the expense of differentiation into ectodermal and myogenic lineages. Using high-resolution temporal transcriptome analysis, we identify the gene regulatory networks downstream of membrane depolarization and calcium signaling and discover that inhibition of the mTOR pathway transitions the pluripotent cell to a differentiated fate. By manipulating Vmusing a suite of tools, we establish a bioelectric pathway that regulates pluripotency in vertebrates, including human embryonic stem cells.  more » « less
Award ID(s):
1553228
PAR ID:
10378977
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Peripheral taste receptor cells use multiple signaling pathways to transduce taste stimuli into output signals that are sent to the brain. We have previously identified a subpopulation of Type III taste cells that are broadly responsive (BR) and respond to multiple taste stimuli including bitter, sweet, umami, and sour. These BR cells use a PLCβ3/IP3R1 signaling pathway to detect bitter, sweet, and umami stimuli and use a separate pathway to detect sour. Currently, the downstream targets of the PLCβ3 signaling pathway are unknown. Here we identify TRPM4, a monovalent selective TRP channel, as an important downstream component in this signaling pathway. Using live cell imaging on isolated taste receptor cells from mice, we show that inhibition of TRPM4 abolished the taste-evoked sodium responses and significantly reduced the taste-evoked calcium responses in BR cells. Since BR cells are a subpopulation of Type III taste cells, they have conventional chemical synapses that require the activation of voltage-gated calcium channels (VGCCs) to cause neurotransmitter release. We found that TRPM4-dependent membrane depolarization selectively activates L-type VGCCs in these cells. The calcium influx through L-type VGCCs also generates a calcium-induced calcium release (CICR) via ryanodine receptors that enhances TRPM4 activity. Together these signaling events amplify the initial taste response to generate an appropriate output signal. 
    more » « less
  2. Abstract Many annelids can regenerate missing body parts or reproduce asexually, generating all cell types in adult stages. However, the putative adult stem cell populations involved in these processes, and the diversity of cell types generated by them, are still unknown. To address this, we recover 75,218 single cell transcriptomes of the highly regenerative and asexually-reproducing annelidPristina leidyi. Our results uncover a rich cell type diversity including annelid specific types as well as novel types. Moreover, we characterise transcription factors and gene networks that are expressed specifically in these populations. Finally, we uncover a broadly abundant cluster of putative stem cells with a pluripotent signature. This population expresses well-known stem cell markers such asvasa,piwiandnanoshomologues, but also shows heterogeneous expression of differentiated cell markers and their transcription factors. We find conserved expression of pluripotency regulators, including multiple chromatin remodelling and epigenetic factors, inpiwi+cells. Finally, lineage reconstruction analyses reveal computational differentiation trajectories frompiwi+cells to diverse adult types. Our data reveal the cell type diversity of adult annelids by single cell transcriptomics and suggest that apiwi+ cell population with a pluripotent stem cell signature is associated with adult cell type differentiation. 
    more » « less
  3. Abstract Scalable processes are requisite for the robust biomanufacturing of human pluripotent stem cell (hPSC)‐derived therapeutics. Toward this end, we demonstrate the xeno‐free expansion and directed differentiation of human embryonic and induced pluripotent stem cells to definitive endoderm (DE) in a controlled stirred suspension bioreactor (SSB). Based on previous work on converting hPSCs to insulin‐producing progeny, differentiation of two hPSC lines was optimized in planar cultures yielding up to 87% FOXA2+/SOX17+cells. Next, hPSCs were propagated in an SSB with controlled pH and dissolved oxygen. Cultures displayed a 10‐ to 12‐fold increase in cell number over 5–6 days with the maintenance of pluripotency (>85% OCT4+) and viability (>85%). For differentiation, SSB cultures yielded up to 89% FOXA2+/SOX17+cells or ~ 8 DE cells per seeded hPSC. Specification to DE cell fate was consistently more efficient in the bioreactor compared to planar cultures. Hence, a tunable strategy is established that is suitable for the xeno‐free manufacturing of DE cells from different hPSC lines in scalable SSBs. This study advances bioprocess development for producing a wide gamut of human DE cell‐derived therapeutics. 
    more » « less
  4. The ability of an organism to regrow tissues is regulated by various signaling pathways. One such pathway that has been studied widely both in the context of regeneration and development is the Notch signaling pathway. Notch is required for the development of the eye and regeneration of tissues in multiple organisms, but it is unknown if Notch plays a role in the regulation of Xenopus laevis embryonic eye regrowth. We found that Notch1 is required for eye regrowth and regulates retinal progenitor cell proliferation. Chemical and molecular inhibition of Notch1 significantly decreased eye regrowth by reducing retinal progenitor cell proliferation without affecting retinal differentiation. Temporal inhibition studies showed that Notch function is required during the first day of regrowth. Interestingly, Notch1 loss-of-function phenocopied the effects of the inhibition of the proton pump, vacuolar-type ATPase (V-ATPase), where retinal proliferation but not differentiation was blocked during eye regrowth. Overexpression of a form of activated Notch1, the Notch intracellular domain (NICD) rescued the loss of eye regrowth due to V-ATPase inhibition. These findings highlight the importance of the Notch signaling pathway in eye regeneration and its role in inducing retinal progenitor cell proliferation in response to injury. 
    more » « less
  5. Summary Damage can be signalled by extracellular ATP (eATP) using plasma membrane (PM) receptors to effect cytosolic free calcium ion ([Ca2+]cyt) increase as a second messenger. The downstream PM Ca2+channels remain enigmatic. Here, theArabidopsis thalianaCa2+channel subunit CYCLIC NUCLEOTIDE‐GATED CHANNEL2 (CNGC2) was identified as a critical component linking eATP receptors to downstream [Ca2+]cytsignalling in roots.Extracellular ATP‐induced changes in single epidermal cell PM voltage and conductance were measured electrophysiologically, changes in root [Ca2+]cytwere measured with aequorin, and root transcriptional changes were determined by quantitative real‐time PCR. Twocngc2loss‐of‐function mutants were used:cngc2‐3anddefence not death1(which expresses cytosolic aequorin).Extracellular ATP‐induced transient depolarization of Arabidopsis root elongation zone epidermal PM voltage was Ca2+dependent, requiring CNGC2 but not CNGC4 (its channel co‐subunit in immunity signalling). Activation of PM Ca2+influx currents also required CNGC2. The eATP‐induced [Ca2+]cytincrease and transcriptional response incngc2roots were significantly impaired.CYCLIC NUCLEOTIDE‐GATED CHANNEL2 is required for eATP‐induced epidermal Ca2+influx, causing depolarization leading to [Ca2+]cytincrease and damage‐related transcriptional response. 
    more » « less