skip to main content


Title: Forebrain nuclei linked to woodpecker territorial drum displays mirror those that enable vocal learning in songbirds
Vocal learning is thought to have evolved in 3 orders of birds (songbirds, parrots, and hummingbirds), with each showing similar brain regions that have comparable gene expression specializations relative to the surrounding forebrain motor circuitry. Here, we searched for signatures of these same gene expression specializations in previously uncharacterized brains of 7 assumed vocal non-learning bird lineages across the early branches of the avian family tree. Our findings using a conserved marker for the song system found little evidence of specializations in these taxa, except for woodpeckers. Instead, woodpeckers possessed forebrain regions that were anatomically similar to the pallial song nuclei of vocal learning birds. Field studies of free-living downy woodpeckers revealed that these brain nuclei showed increased expression of immediate early genes (IEGs) when males produce their iconic drum displays, the elaborate bill-hammering behavior that individuals use to compete for territories, much like birdsong. However, these specialized areas did not show increased IEG expression with vocalization or flight. We further confirmed that other woodpecker species contain these brain nuclei, suggesting that these brain regions are a common feature of the woodpecker brain. We therefore hypothesize that ancient forebrain nuclei for refined motor control may have given rise to not only the song control systems of vocal learning birds, but also the drumming system of woodpeckers.  more » « less
Award ID(s):
1952542 1947472
NSF-PAR ID:
10378996
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Editor(s):
Townsend, Simon W.
Date Published:
Journal Name:
PLOS Biology
Volume:
20
Issue:
9
ISSN:
1545-7885
Page Range / eLocation ID:
e3001751
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Learned vocalizations are important for communication in some vertebrate taxa. The neural circuitry for the learning and production of vocalizations is well known in songbirds, many of which learn songs initially during a critical period early in life. Dopamine is essential for motor learning, including song learning, and dopamine‐related measures change throughout development in song‐control regions such as HVC, the lateral magnocellular nucleus of the anterior nidopallium (LMAN), Area X, and the robust nucleus of the arcopallium (RA). In mammals, the neuropeptide neurotensin strongly interacts with dopamine signaling. This study investigated a potential role for the neurotensin system in song learning by examining how neurotensin (Nts) and neurotensin receptor 1 (Ntsr1) expression change throughout development.NtsandNtsr1mRNA expression was analyzed in song‐control regions of male zebra finches in four stages of the song learning process: pre‐subsong (25 days posthatch; dph), subsong (45 dph), plastic song (60 dph), and crystallized song (130 dph).Ntsexpression in LMAN during the subsong stage was lower compared to other time points.Ntsr1expression was highest in HVC, Area X, and RA during the pre‐subsong stage. Opposite and complementary expression patterns for the two genes in song nuclei and across the whole brain suggest distinct roles for regions that produce and receiveNts. The expression changes at crucial time points for song development are similar to changes observed in dopamine studies and suggestNtsmay be involved in the process of vocal learning. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 671–686, 2018

     
    more » « less
  2. Abstract Vocal learning in songbirds is mediated by a highly localized system of interconnected forebrain regions, including recurrent loops that traverse the cortex, basal ganglia, and thalamus. This brain-behavior system provides a powerful model for elucidating mechanisms of vocal learning, with implications for learning speech in human infants, as well as for advancing our understanding of skill learning in general. A long history of experiments in this area has tested neural responses to playback of different song stimuli in anesthetized birds at different stages of vocal development. These studies have demonstrated selectivity for different song types that provide neural signatures of learning. In contrast to the ease of obtaining responses to song playback in anesthetized birds, song-evoked responses in awake birds are greatly reduced or absent, indicating that behavioral state is an important determinant of neural responsivity. Song-evoked responses can be elicited during sleep as well as anesthesia, and the selectivity of responses to song playback in adult birds is highly similar between anesthetized and sleeping states, encouraging the idea that anesthesia and sleep are similar. In contrast to that idea, we report evidence that cortical responses to song playback in juvenile zebra finches ( Taeniopygia guttata ) differ greatly between sleep and urethane anesthesia. This finding indicates that behavioral states differ in sleep versus anesthesia and raises questions about relationships between developmental changes in sleep activity, selectivity for different song types, and the neural substrate for vocal learning. 
    more » « less
  3. Abstract

    The thalamostriatal system is a major network in the mammalian brain, originating principally from the intralaminar nuclei of thalamus. Its functions remain unclear, but a subset of these projections provides a pathway through which the cerebellum communicates with the basal ganglia. Both the cerebellum and basal ganglia play crucial roles in motor control. Although songbirds have yielded key insights into the neural basis of vocal learning, it is unknown whether a thalamostriatal system exists in the songbird brain. Thalamic nucleus DLM is an important part of the song system, the network of nuclei required for learning and producing song. DLM receives output from song system basal ganglia nucleus Area X and sits within dorsal thalamus, the proposed avian homolog of the mammalian intralaminar nuclei that also receives projections from the cerebellar nuclei. Using a viral vector that specifically labels presynaptic axon segments, we show in Bengalese finches that dorsal thalamus projects to Area X, the basal ganglia nucleus of the song system, and to surrounding medial striatum. To identify the sources of thalamic input to Area X, we map DLM and cerebellar‐recipient dorsal thalamus (DTCbN). Surprisingly, we find both DLM and dorsal anterior DTCbNadjacent to DLM project to Area X. In contrast, the ventral medial subregion of DTCbNprojects to medial striatum outside Area X. Our results suggest the basal ganglia in the song system, like the mammalian basal ganglia, integrate feedback from the thalamic region to which they project as well as thalamic regions that receive cerebellar output.

     
    more » « less
  4. Sensory responses to courtship signals can be altered by reproductive hormones. In seasonally‐breeding female songbirds, for example, sound‐induced immediate early gene expression in the auditory pathway is selective for male song over behaviourally irrelevant sounds only when plasma oestradiol reaches breeding‐like levels. This selectivity has been hypothesised to be mediated by the release of monoaminergic neuromodulators in the auditory pathway. We previously showed that in oestrogen‐primed female white‐throated sparrows, exposure to male song induced dopamine and serotonin release in auditory regions. To mediate hormone‐dependent selectivity, this release must be (i) selective for song and (ii) modulated by endocrine state. Therefore, in the present study, we addressed both questions by conducting playbacks of song or a control sound to females in a breeding‐like or a nonbreeding endocrine state. We then used high‐performance liquid chromatography to measure turnover of dopamine, norepinephrine and serotonin in the auditory midbrain and forebrain. We found that sound‐induced turnover of dopamine and serotonin depended on endocrine state; hearing sound increased turnover in the auditory forebrain only in the birds in a breeding‐like endocrine state. Contrary to our expectations, these increases occurred in response to either song or artificial tones; in other words, they were not selective for song. The selectivity of sound‐induced monoamine release was thus strikingly different from that of immediate early gene responses described in previous studies. We did, however, find that constitutive monoamine release was altered by endocrine state; irrespective of whether the birds heard sound or not, turnover of serotonin in the auditory forebrain was higher in a breeding‐like state than in a nonbreeding endocrine state. The results of the present study suggest that dopaminergic and serotonergic responses to song and other sounds, as well as serotonergic tone in auditory areas, could be seasonally modulated.

     
    more » « less
  5. Many social animals can recognize other individuals by their vocalizations. This requires a memory system capable of mapping incoming acoustic signals to one of many known individuals. Using the zebra finch, a social songbird that uses songs and distance calls to communicate individual identity (Elie and Theunissen, 2018), we tested the role of two cortical-like brain regions in a vocal recognition task. We found that the rostral region of the Cadomedial Nidopallium (NCM), a secondary auditory region of the avian pallium, was necessary for maintaining auditory memories for conspecific vocalizations in both male and female birds, whereas HVC (used as a proper name), a premotor areas that gates auditory input into the vocal motor and song learning pathways in male birds (Roberts and Mooney, 2013), was not. Both NCM and HVC have previously been implicated for processing the tutor song in the context of song learning (Sakata and Yazaki-Sugiyama, 2020). Our results suggest that NCM might not only store songs as templates for future vocal imitation but also songs and calls for perceptual discrimination of vocalizers in both male and female birds. NCM could therefore operate as a site for auditory memories for vocalizations used in various facets of communication. We also observed that new auditory memories could be acquired without intact HVC or NCM but that for these new memories NCM lesions caused deficits in either memory capacity or auditory discrimination. These results suggest that the high-capacity memory functions of the avian pallial auditory system depend on NCM.

    SIGNIFICANCE STATEMENTMany aspects of vocal communication require the formation of auditory memories. Voice recognition, for example, requires a memory for vocalizers to identify acoustical features. In both birds and primates, the locus and neural correlates of these high-level memories remain poorly described. Previous work suggests that this memory formation is mediated by high-level sensory areas, not traditional memory areas such as the hippocampus. Using lesion experiments, we show that one secondary auditory brain region in songbirds that had previously been implicated in storing song memories for vocal imitation is also implicated in storing vocal memories for individual recognition. The role of the neural circuits in this region in interpreting the meaning of communication calls should be investigated in the future.

     
    more » « less