skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Physics students who teach cultivate a deeper sense of professional identity
Historically, graduate education’s goal was to prepare future academics, and has thus focused on the creation and conservation of disciplinary knowledge. However, today’s reality is that most STEM graduate students (GSs) go on to non-academic careers. As educators, it should be our aim to equip GSs for success, regardless of career aspirations. It is therefore essential that we shift our focus towards preparing a new type of scholar – one with a strong professional identity – rather than preparing a person for a specific type of career. We argue that helping students cultivate a professional identity has been largely missing from physics graduate education. Connecting ideas across disciplines and applying abstract knowledge to real problems—as one does when teaching—is a necessity for the development of a strong professional identity. It is hence the integration of knowledge transformation (teaching) into graduate physics education that led us to create the Graduate Identity Formation through Teaching (GIFT) project. In GIFT, GSs are supported to construct adult-level, inquiry-based, 30-minute lessons based on specific K–6 Next Generation Science Standards. The GSs serve as disciplinary experts by teaching their lesson to elementary teacher candidates (TCs). The TCs then turn this knowledge into 15-minute mini-lessons for elementary students. Finally, the GSs observe the TCs teaching the lesson to K–6 students and reflect on the entire experience. We will present results from four semesters of GIFT showing that project participation promotes the development of GS professional identity, with implications for how we can support physics GSs in terms of their current educational activities and their future careers.  more » « less
Award ID(s):
1806698
PAR ID:
10379267
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
APS March Meeting 2022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Historically, the goal of graduate education has been to prepare future academics, and it has thus focused on the creation and conservation of disciplinary knowledge. However, today’s reality is that many engineering graduate students (GSs) go on to non-academic careers. As educators, it should be our aim to equip GSs for success, regardless of career aspirations. It is therefore essential that we shift our focus towards preparing a new type of scholar – one with a strong professional identity – rather than preparing a person for a specific type of career. We argue that helping students cultivate a professional identity has been largely missing from engineering graduate education. Connecting ideas across disciplines and applying abstract knowledge to real problems—as one does when teaching—is a necessity for the development of a strong professional identity. It is hence the integration of knowledge transformation (teaching) into graduate engineering education that led us to create the Graduate Identity Formation through Teaching (GIFT) project. In GIFT, engineering GSs are supported to construct adult-level, inquiry-based, 30-minute lessons based on specific K–6 Next Generation Science Standards. The GSs serve as disciplinary experts by teaching their lesson to elementary teacher candidates (TCs) who are enrolled in an Elementary Science Methods course. The TCs then turn this knowledge into 15-minute mini-lessons for elementary students with input and feedback from the GSs. Finally, the GSs observe the TCs teaching the lesson to K–6 students and reflect on the entire experience. To support the work that the GS do and account for the time they spend on the project, they also enroll in a 1-credit graduate course about teaching and learning which is open to graduate students from all disciplines. We will present results from five semesters of GIFT showing that project participation (1) promotes the development of GS professional identity, (2) reduces impostor feelings, (3) leads to changes in attitudes about K–12 educators, and (4) improves GSs’ skills in communicating with a variety of audiences. In the future, these results can be extrapolated to support engineering GSs in terms of their current educational activities and their future careers. 
    more » « less
  2. “Those who can’t do, teach.” This hurtful adage continues to be common, implying that those who are teachers are somehow lesser, not quite as smart, or could not make it in a ‘better’ profession. However, one could argue that this adage – and the damage it wreaks – persists because the general public does not fully understand what teachers do and the expertise involved in teaching well. The question then becomes, how can science educators provide an accurate picture of science education with those outside the field? The assumption being that a better-educated public may be more supportive in a number of spheres. Therefore, the purpose of this roundtable will to be to discuss the unexpected findings from a project that pairs STEM graduate students (GSs) with elementary teacher candidates (TCs) for the purposes of TCs learning content knowledge for lesson planning. These findings include themes of the difficulties involved in planning an effective lesson; the difference between content and teaching expertise; seeing teaching as a well-honed skill; and, finding ways to give back to the field of education. Viewed through the lens of disciplinary stewardship (both on the part of the GSs and TCs), we see these unanticipated findings as something that could perhaps be expanded into more purposeful collaborations in the future and would like to discuss these possibilities further with others in our field. Related to the conference theme of “Why Science Education?” this roundtable presentation intends to engage science educators in considering how to support those outside the field to answer this question as well as the question, “Why Teach Science in Particular Ways?” in a thoughtful manner such that we may cultivate more advocates for high-quality science education within the general public. 
    more » « less
  3. When schools and universities across the world transitioned online due to the COVID-19 pandemic, Ed+gineering, a National Science Foundation (NSF) project that partners engineering and education undergraduates to design and deliver engineering lessons to elementary students, also had to shift its hands-on lessons to a virtual format. Through the lens of social cognitive theory (SCT), this study investigates engineering and education students’ experiences during the shift to online instruction to understand how they perceived its influence on their learning. As a result of modifying their lessons for online delivery, students reported learning professional skills, including skills for teaching online and educational technology skills, as well as Science, Technology, Engineering, and Mathematics (STEM) content. Some also lamented missed learning opportunities, like practice presenting face-to-face. Students’ affective responses were often associated with preparing and delivering their lessons. SCT sheds light on how the mid-semester change in their environment, caused by the shift in designing and teaching from face-to-face to online, affected the undergraduate engineering and education students’ personal experiences and affect. Overall, the transition to fully online was effective for students’ perceived learning and teaching of engineering. Though students experienced many challenges developing multimedia content for delivering hands-on lessons online, they reported learning new skills and knowledge and expressed positive affective responses. From the gains reported by undergraduates, we believe that this cross-disciplinary virtual team assignment was a successful strategy for helping undergraduates build competencies in virtual skills. We posit that similar assignment structures and opportunities post-pandemic will also continue to prepare future students for the post-pandemic workplace. 
    more » « less
  4. As part of the STEP UP 4 Women project, a national initiative to empower high school teachers to recruit women to pursue physics degrees in college, we developed two lessons for high school physics classes that are intended to facilitate the physics identity development of female students. One discusses physics careers and links to students' own values and goals; the other focuses on a discussion of underrepresentation of women in physics with the intention of having students elicit and examine stereotypes in physics. In piloting these lessons, we found statistically significant improvements in students' identities, particularly recognition beliefs (feeling recognized by others as a physics person) and beliefs in a future physics career. Moreover, female students have larger gains than male students in future beliefs (seeing themselves as physicists in the future) from both lessons, which makes it promising to contribute to alleviating the underrepresentation of women in physics. Using structural equation modeling, we test a path model of various physics identity constructs, extending an earlier, established model. In this paper, we also compare a preliminary structural analysis of students' physics identities before and after the career lesson, with an eye towards understanding how students' identities develop over time and due to these experiences. 
    more » « less
  5. Major challenges in engineering education include retention of undergraduate engineering students (UESs) and continued engagement after the first year when concepts increase in difficulty. Additionally, employers, as well as ABET, look for students to demonstrate non-technical skills, including the ability to work successfully in groups, the ability to communicate both within and outside their discipline, and the ability to find information that will help them solve problems and contribute to lifelong learning. Teacher education is also facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards (NGSS) and state level standards of learning. To help teachers meet these standards in their classrooms, education courses for preservice teachers (PSTs) must provide resources and opportunities to increase science and engineering knowledge, and the associated pedagogies. To address these challenges, Ed+gineering, an NSF-funded multidisciplinary collaborative service learning project, was implemented into two sets of paired-classes in engineering and education: a 100 level mechanical engineering class (n = 42) and a foundations class in education (n = 17), and a fluid mechanics class in mechanical engineering technology (n = 23) and a science methods class (n = 15). The paired classes collaborated in multidisciplinary teams of 5-8 undergraduate students to plan and teach engineering lessons to local elementary school students. Teams completed a series of previously tested, scaffolded activities to guide their collaboration. Designing and delivering lessons engaged university students in collaborative processes that promoted social learning, including researching and planning, peer mentoring, teaching and receiving feedback, and reflecting and revising their engineering lesson. The research questions examined in this pilot, mixed-methods research study include: (1) How did PSTs’ Ed+gineering experiences influence their engineering and science knowledge?; (2) How did PSTs’ and UESs’ Ed+gineering experiences influence their pedagogical understanding?; and (3) What were PSTs’ and UESs’ overall perceptions of their Ed+gineering experiences? Both quantitative (e.g., Engineering Design Process assessment, Science Content Knowledge assessment) and qualitative (student reflections) data were used to assess knowledge gains and project perceptions following the semester-long intervention. Findings suggest that the PSTs were more aware and comfortable with the engineering field following lesson development and delivery, and often better able to explain particular science/engineering concepts. Both PSTs and UESs, but especially the latter, came to realize the importance of planning and preparing lessons to be taught to an audience. UESs reported greater appreciation for the work of educators. PSTs and UESs expressed how they learned to work in groups with multidisciplinary members—this is a valuable lesson for their respective professional careers. Yearly, the Ed+gineering research team will also request and review student retention reports in their respective programs to assess project impact. 
    more » « less