skip to main content


Title: High‐Resolution Modeling of Reservoir Release and Storage Dynamics at the Continental Scale
Abstract

Manmade reservoirs are important components of the terrestrial water balance. Thus, considering the hydro‐climatic effects of reservoirs is important in water cycle studies at a river basin to global scales; yet, reservoirs are represented poorly in large‐scale hydrological and climate models. Here we present a high‐resolution (5 km) continental‐scale reservoir storage dynamics and release scheme by enhancing existing schemes and adding critical novel parameterizations to improve reservoir storage and release simulations. The new scheme simulates river‐floodplain‐reservoir storages in an integrated manner considering their spatial and temporal variations. A new calibration scheme is also incorporated to better simulate reservoir dynamics considering cascade‐reservoir effects. Further, since no reservoir bathymetry data are available over large domains, we use a state‐of‐the‐art digital elevation model and reservoir extent data to derive reservoir bed elevation. The new scheme is integrated within the river‐floodplain routing scheme of a continental hydrological model LEAF‐Hydro‐Flood. Results from the simulation of ~1,900 reservoirs within the contiguous United States suggest that the model well captures the observed reservoir storage‐release dynamics. Comparison of our results with those from the existing schemes suggest a significant improvement; importantly, the new scheme reduces the excessive and frequent reservoir overfilling and underfilling. Comparison of results with satellite‐based surface water data shows that the model accurately reproduces the large‐scale patterns of reservoir‐floodplain inundation extents. It is expected that the results of this study will inform the incorporation of reservoirs in hyper‐resolution models to improve simulations of terrestrial water storage and flow and examine reservoir‐atmosphere interactions over large domains.

 
more » « less
Award ID(s):
1752729
NSF-PAR ID:
10379309
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
55
Issue:
1
ISSN:
0043-1397
Page Range / eLocation ID:
p. 787-810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Numerous studies have examined the changes in streamflow in the Mekong River Basin (MRB) using observations and hydrological modeling; however, there is a lack of integrated modeling studies that explicitly simulate the natural and human‐induced changes in flood dynamics over the entire basin. Here we simulate the river‐floodplain‐reservoir inundation dynamics over the MRB for 1979–2016 period using a newly integrated, high‐resolution (~5 km) river hydrodynamics‐reservoir operation model. The framework is based on the river‐floodplain hydrodynamic model CaMa‐Flood in which a new reservoir operation scheme is incorporated by including 86 existing MRB dams. The simulated flood extent is downscaled to a higher resolution (~90 m) to investigate fine‐scale inundation dynamics, and results are validated with ground‐ and satellite‐based observations. It is found that the historical variations in surface water storage have been governed primarily by climate variability; the impacts of dams on river‐floodplain hydrodynamics were marginal until 2009. However, results indicate that the dam impacts increased noticeably in 2010 when the basin‐wide storage capacity doubled due to the construction of new mega dams. Further, results suggest that the future flood dynamics in the MRB would be considerably different than in the past even without climate change and additional dams. However, it is also found that the impacts of dams can largely vary depending on reservoir operation strategies. This study is expected to provide the basis for high‐resolution river‐floodplain‐reservoir modeling for a holistic assessment of the impacts of dams and climate change on the floodpulse‐dependent hydro‐ecological systems in the MRB and other global regions.

     
    more » « less
  2. Abstract. We investigate the interannual and interdecadalhydrological changes in the Amazon River basin and its sub-basins duringthe 1980–2015 period using GRACE satellite data and a physically based, 2 kmgrid continental-scale hydrological model (LEAF-Hydro-Flood) that includes aprognostic groundwater scheme and accounts for the effects of land use–landcover (LULC) change. The analyses focus on the dominant mechanisms thatmodulate terrestrial water storage (TWS) variations and droughts. We findthat (1) the model simulates the basin-averaged TWS variations remarkablywell; however, disagreements are observed in spatial patterns of temporaltrends, especially for the post-2008 period. (2) The 2010s is the driestperiod since 1980, characterized by a major shift in the decadal mean comparedto the 2000s caused by increased drought frequency. (3) Long-term trends in TWSsuggest that the Amazon overall is getting wetter (1.13 mm yr−1), but itssouthern and southeastern sub-basins are undergoing significant negative TWSchanges, caused primarily by intensified LULC changes. (4) Increasingdivergence between dry-season total water deficit and TWS release suggests astrengthening dry season, especially in the southern and southeasternsub-basins. (5) The sub-surface storage regulates the propagation ofmeteorological droughts into hydrological droughts by strongly modulatingTWS release with respect to its storage preceding the drought condition. Oursimulations provide crucial insight into the importance of sub-surface storagein alleviating surface water deficit across Amazon and open pathways forimproving prediction and mitigation of extreme droughts under changingclimate and increasing hydrologic alterations due to human activities (e.g.,LULC change). 
    more » « less
  3. null (Ed.)
    Abstract. We develop a new large-scale hydrological and water resources model, theCommunity Water Model (CWatM), which can simulate hydrology both globallyand regionally at different resolutions from 30 arcmin to 30 arcsec atdaily time steps. CWatM is open source in the Python programming environmentand has a modular structure. It uses global, freely available data in thenetCDF4 file format for reading, storage, and production of data in acompact way. CWatM includes general surface and groundwater hydrologicalprocesses but also takes into account human activities, such as water useand reservoir regulation, by calculating water demands, water use, andreturn flows. Reservoirs and lakes are included in the model scheme. CWatMis used in the framework of the Inter-Sectoral Impact Model IntercomparisonProject (ISIMIP), which compares global model outputs. The flexible modelstructure allows for dynamic interaction with hydro-economic and water qualitymodels for the assessment and evaluation of water management options.Furthermore, the novelty of CWatM is its combination of state-of-the-arthydrological modeling, modular programming, an online user manual andautomatic source code documentation, global and regional assessments atdifferent spatial resolutions, and a potential community to add to, change,and expand the open-source project. CWatM also strives to build a communitylearning environment which is able to freely use an open-source hydrologicalmodel and flexible coupling possibilities to other sectoral models, such asenergy and agriculture. 
    more » « less
  4. Abstract

    Hydropower dams have received increased global attention due to their detrimental socioenvironmental ramifications. Such attention has led to an increase in studies on the impacts of reservoir operation on river flow; however, a holistic understanding of the compounded effects of hydropower dams on different hydrological characteristics is lacking, especially for large river basins such as the Amazon where hydropower development is on the rise. Here, we mechanistically quantify the historical impacts of existing dams and the potential impacts of the collective operation of existing and planned dams on a basin‐wide scale in the Amazon for the 1981–2019 period. We build on the recently developed high‐resolution (3‐arcmin; ∼5 km) river‐floodplain‐reservoir model, the CaMa‐Flood‐Dam, which is enhanced to realistically simulate hydropower dam operation considering maximized power production. Flood simulations are further downscaled to 3 arc‐seconds (∼90 m) resolution to investigate the impacts of dams on fine‐scale flood dynamics across the basin. Results indicate that existing dams have substantially altered downstream river flow and flooding patterns across the Amazon River basin. Specifically, large dams in the Amazonian subbasins, including the Xingu, Madeira, and Tocantins, have altered downstream river flow amplitude by up to 3 orders of magnitude. Further, the collective operation of existing and planned dams could increasingly alter river flow patterns, causing ∼10% decrease in flood duration in many parts of the Amazon mainstem. Our results provide quantitative evidence on the severity of the hydrologic impacts of large hydropower dams and have important implications for sustainable hydropower operation and development in the Amazon and worldwide.

     
    more » « less
  5. The Amazon River basin harbors some of the world’s largest wetland complexes, which are of major importance for biodiversity, the water cycle and climate, and human activities. Accurate estimates of inundation extent and its variations across spatial and temporal scales are therefore fundamental to understand and manage the basin’s resources. More than fifty inundation estimates have been generated for this region, yet major differences exist among the datasets, and a comprehensive assessment of them is lacking. Here we present an intercomparison of 29 inundation datasets for the Amazon basin, based on remote sensing only, hydrological modeling, or multi-source datasets, with 18 covering the lowland Amazon basin (elevation < 500 m, which includes most Amazon wetlands), and 11 covering individual wetland complexes (subregional datasets). Spatial resolutions range from 12.5 m to 25 km, and temporal resolution from static to monthly, spanning up to a few decades. Overall, 31% of the lowland basin is estimated as subject to inundation by at least one dataset. The long-term maximum inundated area across the lowland basin is estimated at 599,700 ± 81,800 km² if considering the three higher quality SAR-based datasets, and 490,300 ± 204,800 km² if considering all 18 datasets. However, even the highest resolution SAR-based dataset underestimates the maximum values for individual wetland complexes, suggesting a basin-scale underestimation of ~10%. The minimum inundation extent shows greater disagreements among datasets than the maximum extent: 139,300 ± 127,800 km² for SAR-based ones and 112,392 ± 79,300 km² for all datasets. Discrepancies arise from differences among sensors, time periods, dates of acquisition, spatial resolution, and data processing algorithms. The median total area subject to inundation in medium to large river floodplains (drainage area > 1,000 km²) is 323,700 km². The highest spatial agreement is observed for floodplains dominated by open water such as along the lower Amazon River, whereas intermediate agreement is found along major vegetated floodplains fringing larger rivers (e.g., Amazon mainstem floodplain). Especially large disagreements exist among estimates for interfluvial wetlands (Llanos de Moxos, Pacaya-Samiria, Negro, Roraima), where inundation tends to be shallower and more variable in time. Our data intercomparison helps identify the current major knowledge gaps regarding inundation mapping in the Amazon and their implications for multiple applications. In the context of forthcoming hydrology-oriented satellite missions, we make recommendations for future developments of inundation estimates in the Amazon and present a WebGIS application (https://amazon-inundation.herokuapp.com/) we developed to provide user-friendly visualization and data acquisition of current Amazon inundation datasets. 
    more » « less