skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Development of the Community Water Model (CWatM v1.04) – a high-resolution hydrological model for global and regional assessment of integrated water resources management
Abstract. We develop a new large-scale hydrological and water resources model, theCommunity Water Model (CWatM), which can simulate hydrology both globallyand regionally at different resolutions from 30 arcmin to 30 arcsec atdaily time steps. CWatM is open source in the Python programming environmentand has a modular structure. It uses global, freely available data in thenetCDF4 file format for reading, storage, and production of data in acompact way. CWatM includes general surface and groundwater hydrologicalprocesses but also takes into account human activities, such as water useand reservoir regulation, by calculating water demands, water use, andreturn flows. Reservoirs and lakes are included in the model scheme. CWatMis used in the framework of the Inter-Sectoral Impact Model IntercomparisonProject (ISIMIP), which compares global model outputs. The flexible modelstructure allows for dynamic interaction with hydro-economic and water qualitymodels for the assessment and evaluation of water management options.Furthermore, the novelty of CWatM is its combination of state-of-the-arthydrological modeling, modular programming, an online user manual andautomatic source code documentation, global and regional assessments atdifferent spatial resolutions, and a potential community to add to, change,and expand the open-source project. CWatM also strives to build a communitylearning environment which is able to freely use an open-source hydrologicalmodel and flexible coupling possibilities to other sectoral models, such asenergy and agriculture.  more » « less
Award ID(s):
1829999
PAR ID:
10223767
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Geoscientific Model Development
Volume:
13
Issue:
7
ISSN:
1991-9603
Page Range / eLocation ID:
3267 to 3298
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. This paper describes the University of New Hampshire Water Balance Model, WBM, a process-based gridded global hydrologic model that simulates the land surface components of the global water cycle and includes water extraction for use in agriculture and domestic sectors. The WBMwas first published in 1989; here, we describe the first fully open-sourceWBM version (v.1.0.0). Earlier descriptions of WBM methods provide the foundation for the most recent model version that is detailed here. We present an overview of themodel functionality, utility, and evaluation of simulated global riverdischarge and irrigation water use. This new version adds a novel suite ofwater source tracking modules that enable the analysis of flow-path histories on water supply. A key feature of WBM v.1.0.0 is the ability to identify the partitioning of sources for each stock or flux within the model. Three different categories of tracking are available: (1) primary inputs of water to the surface of the terrestrial hydrologic cycle (liquid precipitation, snowmelt, glacier melt, and unsustainable groundwater); (2) water that has been extracted for human use and returned to the terrestrial hydrologic system; and (3) runoff originating from user-defined spatial land units. Such component tracking provides a more fully transparent model in that users can identify the underlying mechanisms generating the simulated behavior. We find that WBM v.1.0.0 simulates global river discharge and irrigation water withdrawals well, even with default parameter settings, and for the first time, we are able to show how the simulation arrives at these fluxes by using the novel tracking functions. 
    more » « less
  2. Abstract. Spatially distant sources of neodymium (Nd) to the ocean that carry different isotopic signatures (εNd) have been shown to trace out major water masses and have thus been extensively used to study large-scale features of the ocean circulation both past and current. While the global marine Nd cycle is qualitatively well understood, a complete quantitative determination of all its components and mechanisms, such as the magnitude of its sources and the paradoxical conservative behavior of εNd, remains elusive. To make sense of the increasing collection of observational Nd and εNd data, in this model description paper we present and describe the Global Neodymium Ocean Model (GNOM) v1.0, the first inverse model of the global marine biogeochemical cycle of Nd. The GNOM is embedded in a data-constrained steady-state circulation that affords spectacular computational efficiency, which we leverage to perform systematic objective optimization, allowing us to make preliminary estimates of biogeochemical parameters. Owing to its matrix representation, the GNOM model is additionally amenable to novel diagnostics that allow us to investigate open questions about the Nd cycle with unprecedented accuracy. This model is open-source and freely accessible, is written in Julia, and its code is easily understandable and modifiable for further community developments, refinements, and experiments. 
    more » « less
  3. null (Ed.)
    Abstract. Quantifying how vegetation mediates water partitioning at different spatialand temporal scales in complex, managed catchments is fundamental forlong-term sustainable land and water management. Estimations fromecohydrological models conceptualising how vegetation regulates theinterrelationships between evapotranspiration losses, catchment water storage dynamics, and recharge and runoff fluxes are needed to assess water availability for a range of ecosystem services and evaluate how these might change under increasing extreme events, such as droughts. Currently, the feedback mechanisms between water and mosaics of different vegetation and land cover are not well understood across spatial scales, and the effects of different scaleson the skill of ecohydrological models needs to be clarified. We used thetracer-aided ecohydrological model EcH2O-iso in an intensively monitored 66 km2 mixed land use catchment in northeastern Germany to quantify water flux–storage–age interactions at four model grid resolutions (250, 500, 750, and 1000 m). This used a fusion of field (including precipitation, soil water, groundwater, and stream isotopes) and remote sensing data in the calibration. Multicriteria calibration across the catchment at each resolution revealed some differences in the estimation of fluxes, storages, and water ages. In general, model sensitivity decreased and uncertainty increased with coarser model resolutions. Larger grids were unable to replicate observed streamflow and distributed isotope dynamics in the way smaller pixels could. However, using isotope data in the calibration still helped constrain the estimation of fluxes, storage, and water ages at coarserresolutions. Despite using the same data and parameterisation for calibration at different grid resolutions, the modelled proportion of fluxes differed slightly at each resolution, with coarse models simulating higher evapotranspiration, lower relative transpiration, increased overland flow, and slower groundwater movement. Although the coarser resolutions also revealed higher uncertainty and lower overall model performance, the overall results were broadly similar. The study shows that tracers provide effective calibration constraints on larger resolution ecohydrological modelling and help us understand the influence of grid resolution on the simulation of vegetation–soil interactions. This is essential in interpreting associated uncertainty in estimating land use influence on large-scale “blue” (ground and surface water) and “green” (vegetation and evaporated water) fluxes, particularly for future environmental change. 
    more » « less
  4. Memory models play an important role in verified compilation of imperative programming languages. A representative one is the block-based memory model of CompCert---the state-of-the-art verified C compiler. Despite its success, the abstraction over memory space provided by CompCert's memory model is still primitive and inflexible. In essence, it uses a fixed representation for identifying memory blocks in a global memory space and uses a globally shared state for distinguishing between used and unused blocks. Therefore, any reasoning about memory must work uniformly for the global memory; it is impossible to individually reason about different sub-regions of memory (i.e., the stack and global definitions). This not only incurs unnecessary complexity in compiler verification, but also poses significant difficulty for supporting verified compilation of open or concurrent programs which need to work with contextual memory, as manifested in many previous extensions of CompCert. To remove the above limitations, we propose an enhancement to the block-based memory model based on nominal techniques; we call it the nominal memory model. By adopting the key concepts of nominal techniques such as atomic names and supports to model the memory space, we are able to 1) generalize the representation of memory blocks to any types satisfying the properties of atomic names and 2) remove the global constraints for managing memory blocks, enabling flexible memory structures for open and concurrent programs. To demonstrate the effectiveness of the nominal memory model, we develop a series of extensions of CompCert based on it. These extensions show that the nominal memory model 1) supports a general framework for verified compilation of C programs, 2) enables intuitive reasoning of compiler transformations on partial memory; and 3) enables modular reasoning about programs working with contextual memory. We also demonstrate that these extensions require limited changes to the original CompCert, making the verification techniques based on the nominal memory model easy to adopt. 
    more » « less
  5. SUMMARY We introduce MTUQ, an open-source Python package for seismic source estimation and uncertainty quantification, emphasizing flexibility and operational scalability. MTUQ provides MPI-parallelized grid search and global optimization capabilities, compatibility with 1-D and 3-D Green’s function database formats, customizable data processing, C-accelerated waveform and first-motion polarity misfit functions, and utilities for plotting seismic waveforms and visualizing misfit and likelihood surfaces. Applicability to a range of full- and constrained-moment tensor, point force, and centroid inversion problems is possible via a documented application programming interface, accompanied by example scripts and integration tests. We demonstrate the software using three different types of seismic events: (1) a 2009 intraslab earthquake near Anchorage, Alaska; (2) an episode of the 2021 Barry Arm landslide in Alaska; and (3) the 2017 Democratic People’s Republic of Korea underground nuclear test. With these events, we illustrate the well-known complementary character of body waves, surface waves, and polarities for constraining source parameters. We also convey the distinct misfit patterns that arise from each individual data type, the importance of uncertainty quantification for detecting multimodal or otherwise poorly constrained solutions, and the software’s flexible, modular design. 
    more » « less