skip to main content

Title: Biohybrid robots: recent progress, challenges, and perspectives

The past ten years have seen the rapid expansion of the field of biohybrid robotics. By combining engineered, synthetic components with living biological materials, new robotics solutions have been developed that harness the adaptability of living muscles, the sensitivity of living sensory cells, and even the computational abilities of living neurons. Biohybrid robotics has taken the popular and scientific media by storm with advances in the field, moving biohybrid robotics out of science fiction and into real science and engineering. So how did we get here, and where should the field of biohybrid robotics go next? In this perspective, we first provide the historical context of crucial subareas of biohybrid robotics by reviewing the past 10+ years of advances in microorganism-bots and sperm-bots, cyborgs, and tissue-based robots. We then present critical challenges facing the field and provide our perspectives on the vital future steps toward creating autonomous living machines.

; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Bioinspiration & Biomimetics
Page Range or eLocation-ID:
Article No. 015001
IOP Publishing
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Engineering living systems is a rapidly emerging discipline where the functional biohybrid robotics (or “Bio-bots”) are built by integrating of living cells with engineered scaffolds. Inspired by embryonic heart, we presented earlier the first example of a biohybrid valveless pump-bot, an impedance pump, capable of transporting fluids powered by engineered living muscle tissues. The pump consists of a soft tube attached to rigid boundaries at the ends, and a muscle ring that squeezes the tube cyclically at an off-center location. Cyclic contraction results in a net flow through the tube. We observed that muscle force occasionally buckles the tube in a random fashion, i.e., similar muscles do not buckle the tube consistently. In order to explain this anomaly, here we develop an analytical model to predict the deformation and stability of circular elastic tubes subjected to a uniform squeezing force due to a muscle ring (like a taught rubber band). The prediction from the model is validated by comparing with experiments and finite element analysis. The nonlinear model reveals that the circular elastic tube cannot buckle irrespective of muscle force. Buckling state can be reached and sustained by bending and folding the tube before applying the muscle ring. Thismore »imperfection may appear during assembly of the pump or from nonuniform thickness of the muscle ring. This study provides design guides for developing advanced biohybrid impedance pumps for diverse applications.« less
  2. Abstract

    For over three decades, the materials tetrahedron has captured the essence of materials science and engineering with its interdependent elements of processing, structure, properties, and performance. As modern computational and statistical techniques usher in a new paradigm of data-intensive scientific research and discovery, the rate at which the field of materials science and engineering capitalizes on these advances hinges on collaboration between numerous stakeholders. Here, we provide a contemporary extension to the classic materials tetrahedron with a dual framework—adapted from the concept of a “digital twin”—which offers a nexus joining materials science and information science. We believe this high-level framework, the materials–information twin tetrahedra (MITT), will provide stakeholders with a platform to contextualize, translate, and direct efforts in the pursuit of propelling materials science and technology forward.

    Impact statement

    This article provides a contemporary reimagination of the classic materials tetrahedron by augmenting it with parallel notions from information science. Since the materials tetrahedron (processing, structure, properties, performance) made its first debut, advances in computational and informational tools have transformed the landscape and outlook of materials research and development. Drawing inspiration from the notion of a digital twin, the materials–information twin tetrahedra (MITT) framework captures a holistic perspective of materials science andmore »engineering in the presence of modern digital tools and infrastructures. This high-level framework incorporates sustainability and FAIR data principles (Findable, Accessible, Interoperable, Reusable)—factors that recognize how systems impact and interact with other systems—in addition to the data and information flows that play a pivotal role in knowledge generation. The goal of the MITT framework is to give stakeholders from academia, industry, and government a communication tool for focusing efforts around the design, development, and deployment of materials in the years ahead.

    Graphic abstract« less
  3. Abstract

    Following the draft sequence of the first human genome over 20 years ago, we have achieved unprecedented insights into the rules governing its evolution, often with direct translational relevance to specific diseases. However, staggering sequence complexity has also challenged the development of a more comprehensive understanding of human genome biology. In this context, interspecific genomic studies between humans and other animals have played a critical role in our efforts to decode human gene families. In this review, we focus on how the rapid surge of genome sequencing of both model and non-model organisms now provides a broader comparative framework poised to empower novel discoveries. We begin with a general overview of how comparative approaches are essential for understanding gene family evolution in the human genome, followed by a discussion of analyses of gene expression. We show how homology can provide insights into the genes and gene families associated with immune response, cancer biology, vision, chemosensation, and metabolism, by revealing similarity in processes among distant species. We then explain methodological tools that provide critical advances and show the limitations of common approaches. We conclude with a discussion of how these investigations position us to gain fundamental insights into the evolution ofmore »gene families among living organisms in general. We hope that our review catalyzes additional excitement and research on the emerging field of comparative genomics, while aiding the placement of the human genome into its existentially evolutionary context.

    « less
  4. Abstract

    In its 60 years of existence, the field of nonlinear optics has gained momentum especially over the past two decades thanks to major breakthroughs in material science and technology. In this article, we present a new set of data tables listing nonlinear-optical properties for different material categories as reported in the literature since 2000. The papers included in the data tables are representative experimental works on bulk materials, solvents, 0D-1D-2D materials, metamaterials, fiber waveguiding materials, on-chip waveguiding materials, hybrid waveguiding systems, and materials suitable for nonlinear optics at THz frequencies. In addition to the data tables, we also provide best practices for performing and reporting nonlinear-optical experiments. These best practices underpin the selection process that was used for including papers in the tables. While the tables indeed show strong advancements in the field over the past two decades, we encourage the nonlinear-optics community to implement the identified best practices in future works. This will allow a more adequate comparison, interpretation and use of the published parameters, and as such further stimulate the overall progress in nonlinear-optical science and applications

  5. The field of Mechatronics and Robotics Engineering (MRE) is emerging as a distinct academic discipline. Previously, courses in this field have been housed in departments of Mechanical Engineering, Electrical Engineering, or Computer Science, instead of a standalone department or curriculum. More recently, single, freestanding courses have increasingly grown into course sequences and concentrations, with entire baccalaureate and graduate degree programs now being offered. The field has been legitimized in recent years with the National Center for Education Statistics creating the Classification of Instructional Programs (CIP) code 14.201 Mechatronics, Robotics, and Automation Engineering. As of October 2019, ABET accredits a total of 9 B.S. programs in the field: 5 Mechatronics Engineering, 3 Robotics Engineering, 1 Mechatronics and Robotics Engineering, and none in Automation Engineering. Despite recent tremendous and dynamic growth, MRE lacks a dedicated professional organization and has no discipline-specific ABET criteria. As the field grows more important and widespread, it becomes increasingly relevant to formalize and standardize the curricula of these programs. This paper begins a conversation about the contents of a cohesive concept inventory for MRE. The impetus for this effort grew from a set of four industry and government sponsored workshops held around the country named the Futuremore »of Mechatronics and Robotics Engineering (FoMRE). These workshops brought together multidisciplinary academic professionals and industry leaders in the field, and ran from September 2018 to September 2019. The study presented here focuses primarily on programs at the baccalaureate level, but informs discussion at the graduate level as well. A survey is prepared with lists of potential concept inventory items, and asks university faculty, students and practicing engineers to identify which concepts lie at the core of MRE. Because of the interdisciplinary nature of the field, a wide range of basic concepts including physical quantities and units, circuit analysis, digital logic, electronics, programming, computer-aided design, solid and fluid mechanics, chemistry, dynamic systems and controls, and mathematics are considered. Questions ask participants to rank the priority or importance of potential core concepts from these categories and also provide opportunities for open-ended response. The results of this survey identify gaps between existing undergraduate curricula, student experience, and employer expectations, and continuing work will provide insight into the direction of a unifying curricular design for MRE education.« less