skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Directed emission from uniformly excited non-Hermitian photonic meta-structures
We investigate the emission characteristics of a tri-atomic photonic meta-molecule with asymmetric intra-modal couplings which is uniformly excited by an incident waveform tuned to coherent virtual absorption conditions. By analyzing the dynamics of the discharged radiation, we identify a parameter domain where its directional re-emission properties are optimal.  more » « less
Award ID(s):
2148318
PAR ID:
10379372
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
47
Issue:
22
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 5913
Size(s):
Article No. 5913
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The radio galaxy M87 is the central dominant galaxy of the Virgo Cluster. Very high-energy (VHE, ≳0.1 TeV) emission from M87 has been detected by imaging air Cherenkov telescopes. Recently, marginal evidence for VHE long-term emission has also been observed by the High Altitude Water Cherenkov Observatory, a gamma-ray and cosmic-ray detector array located in Puebla, Mexico. The mechanism that produces VHE emission in M87 remains unclear. This emission originates in its prominent jet, which has been spatially resolved from radio to X-rays. In this paper, we construct a spectral energy distribution from radio to gamma rays that is representative of the nonflaring activity of the source, and in order to explain the observed emission, we fit it with a lepto-hadronic emission model. We found that this model is able to explain nonflaring VHE emission of M87 as well as an orphan flare reported in 2005. 
    more » « less
  2. Abstract The astrophysical origin of stellar-mass black hole (BH) mergers discovered through gravitational waves (GWs) is widely debated. Mergers in the disks of active galactic nuclei (AGNs) represent promising environments for at least a fraction of these events, with possible observational clues in the GW data. An additional clue to unveil AGN merger environments is provided by possible electromagnetic emission from postmerger accreting BHs. Associated with BH mergers in AGN disks, emission from shocks emerging around jets launched by accreting merger remnants is expected. Here we compute the properties of the emission produced during breakout and the subsequent adiabatic expansion phase of the shocks, and we then apply this model to optical flares suggested to be possibly associated with GW events. We find that the majority of the reported flares can be explained by breakout and shock cooling emission. If the optical flares are produced by shock cooling emission, they would display moderate color evolution, possibly color variations among different events, and a positive correlation between delay time and flare duration and would be preceded by breakout emission in X-rays. If the breakout emission dominates the observed lightcurve, we predict the color to be distributed in a narrow range in the optical band and the delay time from GW to electromagnetic emission to be longer than ∼2 days. Hence, further explorations of delay time distributions, flare color evolution, and associated X-ray emission will be useful to test the proposed emission model for the observed flares. 
    more » « less
  3. We investigate the emission of circularly polarized photons from a magnetized quark-gluon plasma with nonzero quark-number and chiral charge chemical potentials. These chemical potentials qualitatively influence the differential emission rates of circularly polarized photons. A nonzero net electric charge density, induced by quark-number chemical potentials, enhances the overall emission of one circular polarization over the other, while a nonzero chiral charge density introduces a spatial asymmetry in the emission with respect to reflection in the transverse plane. The signs of the electrical and chiral charge densities determine which circular polarization dominates overall and whether the emission preferentially aligns with or opposes the magnetic field. Based on these findings, we propose that polarized photon emission is a promising observable for characterizing the quark-gluon plasma produced in heavy-ion collisions. Published by the American Physical Society2024 
    more » « less
  4. Nanoantennas and their arrays (metasurfaces) provide a versatile platform for controlling the coherence of thermal emission. Conventional designs rely on global heating, which impedes emission efficiency and on-chip integration. In this work, we propose an electrically driven metasurface composed of a Yagi-Uda nanoantenna array interconnected by S-shaped electrode wires, which enables the concurrent manipulation of thermal emission spectrally and directionally. A direct simulation approach based on the Wiener-chaos expansion method is employed for quantitative analysis. Our metasurface device exhibits a narrowband emission with high directivity, which is one order higher than that of a single nanorod antenna case. The modeling framework established in this work opens a promising route for realizing coherent mid-infrared emission by metasurfaces. 
    more » « less
  5. Abstract The observability of afterglows from binary neutron star mergers occurring within active galactic nuclei (AGN) disks is investigated. We perform 3D GRMHD simulations of a postmerger system and follow the jet launched from the compact object. We use semianalytic techniques to study the propagation of the blast wave powered by the jet through an AGN disk-like external environment, extending to distances beyond the disk scale height. The synchrotron emission produced by the jet-driven forward shock is calculated to obtain the afterglow emission. The observability of this emission at different frequencies is assessed by comparing it to the quiescent AGN emission. In the scenarios where the afterglow could temporarily outshine the AGN, we find that detection will be more feasible at higher frequencies (≳1014Hz) and the electromagnetic counterpart could manifest as a fast variability in the AGN emission, on timescales less than a day. 
    more » « less