skip to main content


Title: Unique Dimerization Topology and Countercation Binding Modes in 12‐Metallacrown‐4 Compounds
Abstract

Seven dimeric metallacrowns (MC) based on Ln[12‐MCM(III)N(shi)‐4], where LnIII=Dy, Ho, Yb, or Y, MIII=Mn or Ga, and shi3−is salicylhydroximate, have been synthesized and characterized by single‐crystal X‐ray diffraction, and for the dysprosium‐manganese dimers, the magnetic properties have been measured. In each dimer two Ln[12‐MCM(III)N(shi)‐4] units are linked by four bridging dicarboxylate anions (isophthalate, trimesate, dinicotinate, or 2,2′‐dithiodibenzoate). Three different countercations (sodium, gallium(III), or pyridinium) were used to maintain charge balance of the dimer. While pyridinium does not bind to the dimer, the choice of the dicarboxylate dictates where the countercations Na+or GaIIIbind. With isophthalate and trimesate, the sodium ion binds to the central MC cavity opposite of the LnIII, and with dinicotinate the sodium or gallium(III) ions bind to the pyridyl nitrogen of the dinicotinate. All three Dy2Mn8dimers exhibit an out‐of‐phase magnetic susceptibility signal consistent with a shallow barrier to magnetization relaxation.

 
more » « less
Award ID(s):
2154116
NSF-PAR ID:
10379427
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
European Journal of Inorganic Chemistry
Volume:
2022
Issue:
32
ISSN:
1434-1948
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A new series of gallium( iii )/lanthanide( iii ) metallacrown (MC) complexes ( Ln-1 ) was synthesized by the direct reaction of salicylhydroxamic acid (H 3 shi) with Ga III and Ln III nitrates in a CH 3 OH/pyridine mixture. X-ray single crystal analysis revealed two types of structures depending on whether the nitrate counterion coordinate or not to the Ln III : [LnGa 4 (shi) 4 (H 2 shi) 2 (py) 4 (NO 3 )](py) 2 (Ln = Gd III , Tb III , Dy III , Ho III ) and [LnGa 4 (shi) 4 (H 2 shi) 2 (py) 5 ](NO 3 )(py) (Ln = Er III , Tm III , Yb III ). The representative Tb-1 and Yb-1 MCs consist of a Tb/YbGa 4 core with four [Ga III –N–O] repeating units forming a non-planar ring that coordinates the central Ln III through the oxygen atoms of the four shi 3− groups. Two H 2 shi − groups bridge the Ln III to the Ga III ring ions. The Yb III in Yb-1 is eight-coordinated while the ligation of the nine-coordinated Tb III in Tb-1 is completed by one chelating nitrate ion. Ln-1 complexes in the solid state showed characteristic sharp f–f transitions in the visible (Tb, Dy) and near-infrared (Dy, Ho, Er, Yb) spectral ranges upon excitation into the ligand-centered electronic levels at 350 nm. Observed luminescence lifetimes and absolute quantum yields were collected and discussed. For Yb-1 , luminescence data were also acquired in CH 3 OH and CD 3 OD solutions and a more extensive analysis of photophysical properties was performed. This work demonstrates that while obtaining highly luminescent lanthanide( iii ) MCs via a direct synthesis is feasible, many factors such as molar absorptivities, triplet state energies, non-radiative deactivations through vibronic coupling with overtones of O–H, N–H, and C–H oscillators and crystal packing will strongly contribute to the luminescent properties and should be carefully considered. 
    more » « less
  2. Abstract

    Series of lanthanide‐containing metallic coordination complexes are frequently presented as structurally analogous, due to the similar chemical and coordinative properties of the lanthanides. In the case of chiral (LnIII[15‐MCN(L‐pheHA)‐5])3+metallacrowns (MCs), which are well established supramolecular hosts, the formation of dimers templated by a dicarboxylate guest (muconate) in solution of neutral pH is herein shown to have a unique dependence on the identity of the MC's central lanthanide. Calorimetric data and nuclear magnetic resonance diffusion studies demonstrate that MCs containing larger or smaller lanthanides as the central metal only form monomeric host‐guest complexes whereas analogues with intermediate lanthanides (for example, Eu, Gd, Dy) participate in formation of dimeric host‐guest‐host compartments. The driving force for the dimerization event across the series is thought to be a competition between formation of highly stable MCs (larger lanthanides) and optimally linked bridging guests (smaller lanthanides).

     
    more » « less
  3. G-quadruplexes (GQs), spatial assemblies of guanine-rich DNA strands, play an important role in the regulation of gene expression and chromosome stabilization. These structures are recognized to be useful in cancer therapies as the presence of multiple G-quadruplexes in a telomeric strand stops cancer cell proliferation. Metallacrowns of the type 12-MC-4 form planar structures that have remarkable similarity to G-tetrads in terms of dimension, shape and the ability to bind alkali metal and lanthanide cations in a central cavity. The interaction between the Sm( iii )[12-MC Ga(III)shi -4] (SmMC) metallacrown (MC) and human telomeric G-quadruplex structures was examined using several methods including CD titrations, CD melting temperatures, fluorescence titration of SmMC with GQ/Na + , fluorescence intercalator displacement (FID) assays and methods measuring the MC quenching effect on the Tb 3+ /GQ luminescence. It was proven that the studied metallacrown acted as a sensing probe and interacted with quadruplex DNA. The Stern–Volmer quenching constant ( K as ) of Tb 3+ /GQ luminescence was calculated to be 3.9 × 10 5 M −1 . The binding constant using the indirect FID method gave the result of 1.3 × 10 5 M −1 . CD melting temperature experiments reveal the following pattern – the higher the concentration of the complex the lower the registered T m for quadruplex DNA, which indicates a destabilizing effect of SmMC at higher GQ : MC ratios. These data implicate a shape and size selective interaction between MCs and GQs that may be exploited for telomere detection. 
    more » « less
  4. null (Ed.)
    Studies of the coordination chemistry between the diphenylamide ligand, NPh 2 , and the smaller rare-earth Ln III ions, Ln = Y, Dy, and Er, led to the structural characterization by single-crystal X-ray diffraction crystallography of both solvated and unsolvated complexes, namely, tris(diphenylamido-κ N )bis(tetrahydrofuran-κ O )yttrium(III), Y(NPh 2 ) 3 (THF) 2 or [Y(C 12 H 10 N) 3 (C 4 H 8 O) 2 ], 1-Y , and the erbium(III) (Er), 1-Er , analogue, and bis[μ-1κ N :2(η 6 )-diphenylamido]bis[bis(diphenylamido-κ N )yttrium(III)], [(Ph 2 N) 2 Y(μ-NPh 2 )] 2 or [Y 2 (C 12 H 10 N) 6 ], 2-Y , and the dysprosium(III) (Dy), 2-Dy , analogue. The THF ligands of 1-Er are modeled with disorder across two positions with occupancies of 0.627 (12):0.323 (12) and 0.633 (7):0.367 (7). Also structurally characterized was the tetrametallic Er III bridging oxide hydrolysis product, bis(μ-diphenylamido-κ 2 N : N )bis[μ-1κ N :2(η 6 )-diphenylamido]tetrakis(diphenylamido-κ N )di-μ 3 -oxido-tetraerbium(III) benzene disolvate, {[(Ph 2 N)Er(μ-NPh 2 )] 4 (μ-O) 2 }·(C 6 H 6 ) 2 or [Er 4 (C 12 H 10 N) 8 O 2 ]·2C 6 H 6 , 3-Er . The 3-Er structure was refined as a three-component twin with occupancies 0.7375:0.2010:0.0615. 
    more » « less
  5. Abstract

    Anionic molecular models for nonhydrolyzed and partially hydrolyzed aluminum and gallium framework sites on silica, M[OSi(OtBu)3]4and HOM[OSi(OtBu)3]3(where M=Al or Ga), were synthesized from anionic chlorides Li{M[OSi(OtBu)3]3Cl} in salt metathesis reactions. Sequestration of lithium cations with [12]crown‐4 afforded charge‐separated ion pairs composed of monomeric anions M[OSi(OtBu)3]4with outer‐sphere [([12]crown‐4)2Li]+cations, and hydroxides {HOM[OSi(OtBu)3]3} with pendant [([12]crown‐4)Li]+cations. These molecular models were characterized by single‐crystal X‐ray diffraction, vibrational spectroscopy, mass spectrometry and NMR spectroscopy. Upon treatment of monomeric [([12]crown‐4)Li]{HOM[OSi(OtBu)3]3} complexes with benzyl alcohol, benzyloxide complexes were formed, modeling a possible pathway for the formation of active sites for Meerwin–Ponndorf–Verley (MPV) transfer hydrogenations with Al/Ga‐doped silica catalysts.

     
    more » « less