skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2154116

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Multiplex imaging in the second near‐infrared window (NIR‐II, 1000–1700 nm) provides exciting opportunities for more precise understanding of biological processes and more accurate diagnosis of diseases by enabling real‐time acquisition of images with improved contrast and spatial resolution in deeper tissues. Today, the number of imaging agents suitable for this modality remains very scarce. In this work, we have synthesized and fully characterized, including theoretical calculations, a series of dimeric LnIII/GaIIImetallacrowns bearing RuIIpolypyridyl complexes,LnRu‐3(Ln=YIII, YbIII, NdIII, ErIII). Relaxed structures ofYRu‐3in the ground and the excited electronic states have been calculated using dispersion‐corrected density functional theory methods. Detailed photophysical studies ofLnRu‐3have demonstrated that characteristic emission signals of YbIII, NdIIIand ErIIIin the NIR‐II range can be sensitized upon excitation in the visible range through RuII‐centered metal‐to‐ligand charge transfer (MLCT) states. We have also showed that these NIR‐II signals are unambiguously detected in an imaging experiment using capillaries and biological tissue‐mimicking phantoms. This work opens unprecedented perspectives for NIR‐II multiplex imaging using LnIII‐based molecular compounds. 
    more » « less
  2. Abstract By combining advantages of two series of lanthanide(III)/zinc(II) metallacrowns (MCs) assembled using pyrazine‐ (pyzHA2−) and quinoxaline‐ (quinoHA2−) hydroximate building blocks ligands, we created here water‐soluble mixed‐ligand MCs with extended absorption to the visible range. The YbIIIanalogue demonstrated improved photophysical properties in the near‐infrared (NIR) range in cell culture media, facilitating its application for NIR optical imaging in living HeLa cells. 
    more » « less
  3. Abstract Seven dimeric metallacrowns (MC) based on Ln[12‐MCM(III)N(shi)‐4], where LnIII=Dy, Ho, Yb, or Y, MIII=Mn or Ga, and shi3−is salicylhydroximate, have been synthesized and characterized by single‐crystal X‐ray diffraction, and for the dysprosium‐manganese dimers, the magnetic properties have been measured. In each dimer two Ln[12‐MCM(III)N(shi)‐4] units are linked by four bridging dicarboxylate anions (isophthalate, trimesate, dinicotinate, or 2,2′‐dithiodibenzoate). Three different countercations (sodium, gallium(III), or pyridinium) were used to maintain charge balance of the dimer. While pyridinium does not bind to the dimer, the choice of the dicarboxylate dictates where the countercations Na+or GaIIIbind. With isophthalate and trimesate, the sodium ion binds to the central MC cavity opposite of the LnIII, and with dinicotinate the sodium or gallium(III) ions bind to the pyridyl nitrogen of the dinicotinate. All three Dy2Mn8dimers exhibit an out‐of‐phase magnetic susceptibility signal consistent with a shallow barrier to magnetization relaxation. 
    more » « less
  4. The fine tuning of CIE coordinates was demonstrated in a series of molecular tetrachroic chromophores, Dy3+/Ga3+metallacrowns, through modifications of the symmetry around Dy3+and the nature of the organic ligands. 
    more » « less