Talc‐rich rocks are common in exhumed subduction zone terranes and may explain geophysical observations of the subduction zone interface, particularly beneath Guerrero, Mexico, where the Cocos plate subducts horizontally beneath North America and episodic tremor and slow slip (ETS) occurs. We present petrologic models exploring (a) the degree of silica metasomatism required to produce talc in serpentinized peridotites at the pressure‐temperature conditions of the plate interface beneath Guerrero and (b) the amount of silica‐bearing water produced by rocks from the subducting Cocos plate and the location of fluid pulses. We estimate the volumes of talc produced by the advection of silica‐rich fluids into serpentinized peridotites at the plate interface over the history of the flat‐slab system. In the ETS‐hosting region, serpentinites must achieve ∼43 wt. % SiO2to stabilize talc, but minor additions of silica beyond this produce large volumes of talc. Our models of Cocos plate dehydration predict that water flux into the interface averages 3.9 × 104 kg m−2 Myr−1but suggest that only where subducting basalts undergo major dehydration reactions will sufficient amounts of silica‐rich fluids be produced to drive significant metasomatism. We suggest that talc produced by advective transport of aqueous silica alone cannot account for geophysical interpretations of km‐thick zones of talc‐rich rocks beneath Guerrero, although silica‐bearing fluids that migrate along the plate interface may promote broader metasomatism. Regions of predicted talc production do, however, overlap with the spatial occurrence of ETS, consistent with models of slow slip based on the frictional deformation of metasomatic lithologies.
more »
« less
Episodic Slow Slip Hosted by Talc‐Bearing Metasomatic Rocks: High Strain Rates and Stress Amplification in a Chemically Reacting Shear Zone
Abstract Episodic tremor and slow slip (ETS) downdip of the subduction seismogenic zone are poorly understood slip behaviors of the seismic cycle. Talc, a common metasomatic mineral at the subduction interface, is suggested to host slow slip but this hypothesis has not been tested in the rock record. We investigate actinolite microstructures from talc‐bearing and talc‐free rocks exhumed from the depths of modern ETS (Pimu'nga/Santa Catalina Island, California). Actinolite deformed by dissolution‐reprecipitation creep in the talc‐free rock and dislocation creep ± cataclasis in the talc‐bearing rock. This contrast results from stress amplification in the talc‐bearing rock produced by high strain rates in surrounding weak talc. We hypothesize that higher strain rates in the talc‐bearing sample represent episodic slow slip, while lower strain rates in the talc‐free sample represent intervening aseismic creep. This work highlights the need to consider fluid‐mediated chemical change in studies of subduction zone deformation and seismicity.
more »
« less
- Award ID(s):
- 2053033
- PAR ID:
- 10379430
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 49
- Issue:
- 21
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Talc-rich metasomatic rocks in subduction interface shear zones profoundly influence seismicity and arc magmatism, but their petrogenesis remains controversial. Magnesium isotope compositions of exhumed subduction interface rocks from the Catalina Schist (California, USA) record Mg exchange from ultramafic to crustal rocks. Preferential loss of isotopically light Mg from serpentinite produces isotopically heavy talc-rich metasomatic rocks. Addition of this isotopically light Mg to adjacent metasedimentary and metamafic rocks from the slab produces actinolite- and chlorite-rich metasomatic rocks, respectively, with convergent δ26Mg values relative to their protoliths. The addition of Ca to ultramafic- and metasedimentary-derived metasomatic rocks reflects a separate contribution from infiltrating metabasalt-derived fluids. Talc-rich rocks are formed by passive enrichment of Si in serpentinite during Mg loss to adjacent Mg sinks. These results and a global compilation of exhumed paleosubduction terranes suggest that talc is a common component of the subduction interface and often forms independent of Si metasomatism. Talc is likely prevalent along the interface from mantle wedge corner to subarc wherever ultramafic material is in contact with a Mg sink and where it could influence slow slip events, subduction interface rheology, and arc magmatism in modern subduction zones.more » « less
-
Abstract Megathrust earthquakes and their associated tsunamis cause some of the worst natural disasters. In addition to earthquakes, a wide range of slip behaviors are present at subduction zones, including slow earthquakes that span multiple orders of spatial and temporal scales. Understanding these events may shed light on the stress or strength conditions of the megathrust fault. Out of all types of slow earthquakes, very low frequency earthquakes (VLFEs) are most enigmatic because they are difficult to detect reliably, and the physical nature of VLFEs are poorly understood. Here we show three VLFEs in Cascadia that were dynamically triggered by a 2009 Mw 6.9 Canal de Ballenas earthquake in the Gulf of California. The VLFEs likely locate in between the seismogenic zone and the Cascadia episodic tremor and slip (ETS) zone, including one event with a moment magnitude of 5.7. This is the largest VLFE reported to date, causing clear geodetic signals. Our results show that the Cascadia megathrust fault might slip rapidly at some spots in this gap zone, and such a permissible slip behavior has direct seismic hazard implications for coastal communities and perhaps further inland. Further, the observed seismic sources may represent a new class of slip events, whose characteristics do not fit current understandings of slow or regular earthquakes.more » « less
-
Abstract Tectonic and seismogenic variations in subduction forearcs can be linked through various processes associated with subduction. Along the Cascadia forearc, significant variations between different geologic expressions of subduction appear to correlate, such as episodic tremor-and-slip (ETS) recurrence interval, intraslab seismicity, slab dip, uplift and exhumation rates, and topography, which allows for the systematic study of the plausible controlling mechanisms behind these variations. Even though the southern Cascadia forearc has the broadest topographic expression and shortest ETS recurrence intervals along the margin, it has been relatively underinstrumented with modern seismic equipment. Therefore, better seismic images are needed before robust comparisons with other portions of the forearc can be made. In March 2020, we deployed the Southern Cascadia Earthquake and Tectonics Array throughout the southern Cascadia forearc. This array consisted of 60 continuously recording three-component nodal seismometers with an average station spacing of ∼15 km, and stations recorded ∼38 days of data on average. We will analyze this newly collected nodal dataset to better image the structural characteristics and constrain the seismogenic behavior of the southern Cascadia forearc. The main goals of this project are to (1) constrain the precise location of the plate interface through seismic imaging and the analysis of seismicity, (2) characterize the lower crustal architecture of the overriding forearc crust to understand the role that this plays in enabling the high nonvolcanic tremor density and short episodic slow-slip recurrence intervals in the region, and (3) attempt to decouple the contributions of subduction versus San Andreas–related deformation to uplift along this particularly elevated portion of the Cascadia forearc. The results of this project will shed light on the controlling mechanisms behind heterogeneous ETS behavior and variable forearc surficial responses to subduction in Cascadia, with implications for other analogous subduction margins.more » « less
-
Mélange (or block-in-matrix structures) exerts a first-order control on both the mechanical and chemical evolution of subduction megathrusts. However, the timing and mechanisms that form mélanges are variable and debated. Field observations and (micro-) structural analyses from a metasedimentary mélange in the lawsonite blueschist unit of the Catalina Schist (Santa Catalina Island, California, USA) reveal that syn-subduction deformation and fluid-mediated processes led to mélange formation at the plate interface. Deposited as turbidites, early shear occurred parallel to bedding planes (S1 foliation). At near peak subduction conditions, at the base of the subduction seismogenic zone (∼1.0 GPa, 320 °C), the rocks were intensely deformed in recumbent open to tight folds (F2) with axial planar cleavages (S2). Fracturing, fluid flow, and quartz precipitation are preserved as extensional vein mesh networks in fold noses. Continued shearing led to boudinage of these strengthened noses and transformation into strong blocks within the weaker less-veined matrix composed of high-strain fold limbs (S1−2). Microstructures reveal viscous deformation in the high-strain fold limbs occurred by pressure-solution creep of fine-grained quartz ± albite. In contrast, the fold noses and/or blocks contain coarse-grained quartz veins with little evidence of deformation. These rocks record the development of syn-subduction block-in-matrix mélange structures through the interaction of deformation and mineral precipitation; pressure solution weakened fold limbs-turned-matrix and veining strengthened fold noses-turned-blocks. Although mélange structure is often invoked to explain tremor and slow slip, rheological analysis indicates that these metasedimentary rocks can host tectonic creeping but cannot accommodate slow-slip strain rates by the deformation mechanisms preserved in their microstructures.more » « less
An official website of the United States government
