skip to main content


Title: DEVELOPMENT AND EVALUATION OF REFINED ANNUALIZED INDIVIDUAL TREE DIAMETER AND HEIGHT INCREMENT EQUATIONS FOR THE ACADIAN VARIANT OF THE FOREST VEGETATION SIMULATOR: IMPLICATION FOR FOREST CARBON ESTIMATES
Award ID(s):
1915078
NSF-PAR ID:
10379462
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Mathematical and computational forestry naturalresource sciences
Volume:
14
Issue:
2
ISSN:
1946-7664
Page Range / eLocation ID:
9-31
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Northwest Forest Plan (NWFP) initiated one of the most sweeping changes to forest management in the world, affecting 10 million hectares of federal land. The NWFP is a science-based plan incorporating monitoring and adaptive management and provides a unique opportunity to evaluate the influence of policy. We used >25 years of region-wide bird surveys, forest data, and land-ownership maps to test this policy’s effect on biodiversity. Clearcutting decreased rapidly, and we expected populations of older-forest–associated birds to stabilize on federal land, but to continue declining on private industrial lands where clearcutting continued. In contrast, we expected declines in early-seral–associated species on federal land because of reduced anthropogenic disturbance since the NWFP. Bayesian hierarchical models revealed that bird species’ population trends tracked changes in forest composition. However, against our expectations, declines of birds associated with older forests accelerated. These declines are partly explained by losses of older forests due to fire on federal land and continued clearcutting elsewhere. Indeed, the NWFP anticipated that reversing declines of older forests would take time. Overall, the early-seral ecosystem area was stable, but declined in two ecoregions—the Coast Range and Cascades—along with early-seral bird populations. Although the NWFP halted clearcutting on federal land, this has so far been insufficient to reverse declines in older-forest–associated bird populations. These findings underscore the importance of continuing to prioritize older forests under the NWFP and ensuring that the recently proposed creation of early-seral ecosystems does not impede the conservation and development of older-forest structure.

     
    more » « less
  2. Abstract

    Gradient Forest (GF) is a machine learning algorithm designed to analyze spatial patterns of biodiversity as a function of environmental gradients. An offset measure between the GF‐predicted environmental association of adapted alleles and a new environment (GF Offset) is increasingly being used to predict the loss of environmentally adapted alleles under rapid environmental change, but remains mostly untested for this purpose. Here, we explore the robustness of GF Offset to assumption violations, and its relationship to measures of fitness, using SLiM simulations with explicit genome architecture and a spatial metapopulation. We evaluate measures of GF Offset in: (1) a neutral model with no environmental adaptation; (2) a monogenic “population genetic” model with a single environmentally adapted locus; and (3) a polygenic “quantitative genetic” model with two adaptive traits, each adapting to a different environment. We found GF Offset to be broadly correlated with fitness offsets under both single locus and polygenic architectures. However, neutral demography, genomic architecture, and the nature of the adaptive environment can all confound relationships between GF Offset and fitness. GF Offset is a promising tool, but it is important to understand its limitations and underlying assumptions, especially when used in the context of predicting maladaptation.

     
    more » « less