skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1915078

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Inland waters receive large quantities of dissolved organic carbon (DOC) from soils and act as conduits for the lateral transport of this terrestrially derived carbon, ultimately storing, mineralizing, or delivering it to oceans. The lateral DOC flux plays a crucial role in the global carbon cycle, and numerous models have been developed to estimate the DOC export from different landscapes. We reviewed 34 published models and compared their characteristics to identify challenges in model applications and opportunities for future model development. We classified these models into three types: indicator-driven, hydrology-forced, and process-based DOC export simulation models. They differ mainly in their environmental inputs, simulation approaches for soil DOC production, leaching from soils to inland waters, and transit through inland waters. It is essential to consider landscape characteristics, climate conditions, available data, and research questions when selecting the most appropriate model. Given the substantial assumptions associated with these models, sufficient measurements are required to benchmark estimates. Accurate accounting of terrestrially derived DOC export to oceans requires incorporating the DOC produced in aquatic ecosystems and deposited with rainwater; otherwise, global export estimates may be overestimated by 40.7%. Additionally, improving the representation of mineralization and burial processes in inland waters allows for more accurate accounting of carbon sequestration through land ecosystems. When all the inland water processes are ignored or assuming DOC leaching is equivalent to DOC export, the loss of soil carbon through this lateral flux could be underestimated by 43.9%. 
    more » « less
  2. Free, publicly-accessible full text available August 1, 2026
  3. Free, publicly-accessible full text available April 30, 2026
  4. This is an updated version of the original TREEMAP 2016 raster and the associated files for CONUS. Additions to the TREEMAP 2016 raster attribute table are the SDI, SDImax and RD estimates. 
    more » « less
  5. Tree taper has been of interest for over a century, yet questions remain regarding the effects of silvicultural treatments and forest health on recoverable volume. This work utilizes data from Douglas-fir ( Pseudotsuga menziesii (Mirb.)) ( n = 608) and red alder ( Alnus rubra (Bong.)) ( n = 495) trees to assess the influences of fertilization, pruning, thinning, regeneration origin, and defoliation caused by Swiss Needle Cast (SNC; Nothophaeocryptopus gaeumannii), on stem taper in the Pacific Northwest. The Kozak (2004; For. Chor. 80: 507–515) variable-exponent equation was used to test the addition of treatment and crown variables as the model is widely regarded for its flexibility in application. Using a mixed effects framework, results reveal that thinning of Douglas-fir can result in a 3.5% increase in upper stem diameter inside bark, while pruning may lead to a 4.1% decrease. SNC-induced defoliation of Douglas-fir reduced mean diameter above-breast height by 11.5%. Total volume of artificially regenerated red alder was 16% greater than naturally regenerated stems. Overall, thinning of healthy Douglas-fir and planting red alder may increase recoverable volume and C captured in long-term timber products in the region, and the inclusion of crown variables can increase the predictive power of taper estimates for some species. 
    more » « less