skip to main content


Search for: All records

Award ID contains: 1915078

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2025
  2. Free, publicly-accessible full text available December 1, 2024
  3. Free, publicly-accessible full text available October 1, 2024
  4. null (Ed.)
    Abstract Tree size-density dynamics can inform key trends in forest productivity along with opportunities to increase ecosystem resiliency. Here, we employ a novel approach to estimate the relative density (RD, range 0–1) of any given forest based on its current size-density relationship compared to a hypothetical maximum using the coterminous US national forest inventory between 1999 and 2020. The analysis suggests a static forest land area in the US with less tree abundance but greatly increased timber volume and tree biomass. Coupled with these resource trends, an increase in RD was identified with 90% of US forest land now reaching a biologically-relevant threshold of canopy closure and/or self-thinning induced mortality (RD > 0.3), particularly in areas prone to future drought conditions (e.g., West Coast). Notably, the area of high RD stands (RD > 0.6) has quintupled over the past 20 years while the least stocked stands (RD < 0.3) have decreased 3%. The evidence from the coterminous US forest RD distribution suggest opportunities to increase live tree stocking in understocked stands, while using density management to address tree mortality and resilience to disturbances in increasingly dense forests. 
    more » « less
  5. null (Ed.)
    Stem taper equations, which predict the change in stem form from ground to tip, have become the primary means for estimating bole volume. Stem taper equations can provide predictions with similar levels of accuracy as volume equations, but with greater flexibility, a wider range of potential uses, and consistency between taper and volume. This review is a synthesis of the current state of knowledge on stem taper equations and an assessment of challenges for future model refinement. It includes the history and evolution of stem taper model forms, which have received tremendous attention and focus over the last several decades. Additional focal areas covered are (i) the use of additional covariates beyond tree diameter at breast height (DBH) and total height; (ii) alternative statistical methods for developing stem taper equations such as parametric, semiparametric, and nonparametric approaches; (iii) key considerations for proper development, application, and use of stem taper equations such as sample size requirements, local calibration, and evaluation; and (iv) a synthesis of key findings, future opportunities, and ongoing challenges. Current and developing technologies such as terrestrial laser scanning (TLS) offer an unprecedented opportunity to measure stem form in much greater detail at significantly lower costs and time requirements than traditional methods. Overall, continued development, refinement, and application of stem taper equations will remain important given the critical nature of tree volume for science, accurate inventories, and ultimately, sustainable forest management. 
    more » « less