We demonstrate the use of non-linear manifold learning methods to map the connectivity and extent of similarity between diverse metal-organic framework (MOF) structures in terms of their surface areas by taking into account both crystallographic and electronic structure information. The fusing of geometric and chemical bonding information is accomplished by using 3-dimensional Hirshfeld surfaces of MOF structures, which encode both chemical bonding and molecular geometry information. A comparative analysis of the geometry of Hirshfeld surfaces is mapped into a low dimensional manifold through a graph network where each node corresponds to a different compound. By examining nearest neighbor connections, we discover structural and chemical correlations among MOF structures that would not have been discernible otherwise. Examples of the types of information that can be uncovered using this approach are given.
more »
« less
Monitoring the role of site chemistry on the formation energy of perovskites via deep learning analysis of Hirshfeld surfaces
This paper presents a new approach for predicting thermodynamic properties of perovskites that harnesses deep learning and crystal structure fingerprinting based on Hirshfeld surface analysis. It is demonstrated that convolutional neural network methods capture critical features embedded in two-dimensional Hirshfeld surface fingerprints that enable a quantitative assessment of the formation energy of perovskites. Building on our recent work on lattice parameter prediction from Hirshfeld surface calculations, we show how transfer learning can be used to speed up the training of the neural network, allowing multiple properties to be trained using the same feature extraction layers. We also predict formation energies for various perovskite polymorphs, and our predictions are found to give generally improved performance over a well-established graph network method, but with the methods better suited to different types of datasets. Analysis of the structure types within the dataset reveals the Hirshfeld surface-based method to excel for the less symmetric and similar structures, while the graph network performs better for very symmetric and similar structures.
more »
« less
- Award ID(s):
- 1640867
- PAR ID:
- 10379603
- Date Published:
- Journal Name:
- Journal of Materials Chemistry C
- Volume:
- 9
- Issue:
- 34
- ISSN:
- 2050-7526
- Page Range / eLocation ID:
- 11153 to 11162
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This Letter describes the use of deep learning methods on Hirshfeld surface representations of crystal structure, as an automated means of predicting lattice parameters in cubic inorganic perovskites. While Hirshfeld Surface Analysis is a well-established tool in organic crystallography, we also introduce modified computational protocols for Hirshfeld Surface Analysis tailored specifically to account for nuanced but important differences dealing with inorganic crystals. We demonstrate how two-dimensional Hirshfeld surface fingerprints can serve as a rich “database” of information encoding the complexity of relationships between chemical bonding and bond geometry characteristics of perovskites. Our results are compared with other studies on lattice parameter prediction involving both experimental and computationally derived data, and it is shown that our approach is an improvement over other reported methods. The paper concludes by discussing how this work opens new avenues for data-driven high throughput computational predictions of structure–property relationships involving complex crystal chemistries.more » « less
-
Abstract MotivationQuality assessment (QA) of predicted protein tertiary structure models plays an important role in ranking and using them. With the recent development of deep learning end-to-end protein structure prediction techniques for generating highly confident tertiary structures for most proteins, it is important to explore corresponding QA strategies to evaluate and select the structural models predicted by them since these models have better quality and different properties than the models predicted by traditional tertiary structure prediction methods. ResultsWe develop EnQA, a novel graph-based 3D-equivariant neural network method that is equivariant to rotation and translation of 3D objects to estimate the accuracy of protein structural models by leveraging the structural features acquired from the state-of-the-art tertiary structure prediction method—AlphaFold2. We train and test the method on both traditional model datasets (e.g. the datasets of the Critical Assessment of Techniques for Protein Structure Prediction) and a new dataset of high-quality structural models predicted only by AlphaFold2 for the proteins whose experimental structures were released recently. Our approach achieves state-of-the-art performance on protein structural models predicted by both traditional protein structure prediction methods and the latest end-to-end deep learning method—AlphaFold2. It performs even better than the model QA scores provided by AlphaFold2 itself. The results illustrate that the 3D-equivariant graph neural network is a promising approach to the evaluation of protein structural models. Integrating AlphaFold2 features with other complementary sequence and structural features is important for improving protein model QA. Availability and implementationThe source code is available at https://github.com/BioinfoMachineLearning/EnQA. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
-
The structure of neural circuitry plays a crucial role in brain function. Previous studies of brain organization generally had to trade off between coarse descriptions at a large scale and fine descriptions on a small scale. Researchers have now reconstructed tens to hundreds of thousands of neurons at synaptic resolution, enabling investigations into the interplay between global, modular organization, and cell type-specific wiring. Analyzing data of this scale, however, presents unique challenges. To address this problem, we applied novel community detection methods to analyze the synapse-level reconstruction of an adult femaleDrosophila melanogasterbrain containing >20,000 neurons and 10 million synapses. Using a machine-learning algorithm, we find the most densely connected communities of neurons by maximizing a generalized modularity density measure. We resolve the community structure at a range of scales, from large (on the order of thousands of neurons) to small (on the order of tens of neurons). We find that the network is organized hierarchically, and larger-scale communities are composed of smaller-scale structures. Our methods identify well-known features of the fly brain, including its sensory pathways. Moreover, focusing on specific brain regions, we are able to identify subnetworks with distinct connectivity types. For example, manual efforts have identified layered structures in the fan-shaped body. Our methods not only automatically recover this layered structure, but also resolve finer connectivity patterns to downstream and upstream areas. We also find a novel modular organization of the superior neuropil, with distinct clusters of upstream and downstream brain regions dividing the neuropil into several pathways. These methods show that the fine-scale, local network reconstruction made possible by modern experimental methods are sufficiently detailed to identify the organization of the brain across scales, and enable novel predictions about the structure and function of its parts. Significance StatementThe Hemibrain is a partial connectome of an adult femaleDrosophila melanogasterbrain containing >20,000 neurons and 10 million synapses. Analyzing the structure of a network of this size requires novel and efficient computational tools. We applied a new community detection method to automatically uncover the modular structure in the Hemibrain dataset by maximizing a generalized modularity measure. This allowed us to resolve the community structure of the fly hemibrain at a range of spatial scales revealing a hierarchical organization of the network, where larger-scale modules are composed of smaller-scale structures. The method also allowed us to identify subnetworks with distinct cell and connectivity structures, such as the layered structures in the fan-shaped body, and the modular organization of the superior neuropil. Thus, network analysis methods can be adopted to the connectomes being reconstructed using modern experimental methods to reveal the organization of the brain across scales. This supports the view that such connectomes will allow us to uncover the organizational structure of the brain, which can ultimately lead to a better understanding of its function.more » « less
-
null (Ed.)Physical interactions of proteins play key functional roles in many important cellular processes. To understand molecular mechanisms of such functions, it is crucial to determine the structure of protein complexes. To complement experimental approaches, which usually take a considerable amount of time and resources, various computational methods have been developed for predicting the structures of protein complexes. In computational modeling, one of the challenges is to identify near-native structures from a large pool of generated models. Here, we developed a deep learning–based approach named Graph Neural Network–based DOcking decoy eValuation scorE (GNN-DOVE). To evaluate a protein docking model, GNN-DOVE extracts the interface area and represents it as a graph. The chemical properties of atoms and the inter-atom distances are used as features of nodes and edges in the graph, respectively. GNN-DOVE was trained, validated, and tested on docking models in the Dockground database and further tested on a combined dataset of Dockground and ZDOCK benchmark as well as a CAPRI scoring dataset. GNN-DOVE performed better than existing methods, including DOVE, which is our previous development that uses a convolutional neural network on voxelized structure models.more » « less
An official website of the United States government

