skip to main content

Title: Microbiome diversity and metabolic capacity determines the trophic ecology of the holobiont in Caribbean sponges

Sponges are increasingly recognized as an ecologically important taxon on coral reefs, representing significant biomass and biodiversity where sponges have replaced scleractinian corals. Most sponge species can be divided into two symbiotic states based on symbiont community structure and abundance (i.e., the microbiome), and are characterized as high microbial abundance (HMA) or low microbial abundance (LMA) sponges. Across the Caribbean, sponge species of the HMA or LMA symbiotic states differ in metabolic capacity, as well as their trophic ecology. A metagenetic analysis of symbiont 16 S rRNA and metagenomes showed that HMA sponge microbiomes are more functionally diverse than LMA microbiomes, offer greater metabolic functional capacity and redundancy, and encode for the biosynthesis of secondary metabolites. Stable isotope analyses showed that HMA and LMA sponges primarily consume dissolved organic matter (DOM) derived from external autotrophic sources, or live particulate organic matter (POM) in the form of bacterioplankton, respectively, resulting in a low degree of resource competition between these symbiont states. As many coral reefs have undergone phase shifts from coral- to macroalgal-dominated reefs, the role of DOM, and the potential for future declines in POM due to decreased picoplankton productivity, may result in an increased abundance of chemically defended HMA sponges on tropical coral reefs.

more » « less
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
ISME Communications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Sponges are a crucial component of Caribbean coral reef ecosystem structure and function. In the Caribbean, many sponges show a predictable increase in percent cover or abundance as depth increases from shallow (< 30 m) to mesophotic (30–150 m) depths. Given that sponge abundances are predicted to increase in the Caribbean as coral cover declines, understanding ecological factors that control their distribution is critical. Here we assess if sponge cover increases as depth increases into the mesophotic zone for three common Caribbean reef sponges,Xestospongia muta,Agelas tubulata, andPlakortis angulospiculatus, and use stable isotope analyses to determine whether shifts in trophic resource utilization along a shallow to mesophotic gradient occurred. Ecological surveys show that all target sponges significantly increase in percent cover as depth increases. Using bulk stable isotope analysis, we show that as depth increases there are increases in the δ13C and δ15N values, reflecting that all sponges consumed more heterotrophic picoplankton, with low C:N ratios in the mesophotic zone. However, compound‐specific isotope analysis of amino acids (CSIA‐AA) shows that there are species‐specific increases in δ13CAAand δ15NAAvalues.Xestospongia mutaandP. angulospiculatusshowed a reduced reliance on photoautotrophic resources as depth increased, whileA. tubulataappears to rely on heterotrophy at all depths. The δ13CAAand δ15NAAvalues of these sponges also reflect species‐specific patterns of host utilization of both POM and dissolved organic matter (DOM), its subsequent re‐synthesis, and translocation, by their microbiomes.

    more » « less
  2. Abstract

    On Caribbean coral reefs, sponges are important members of the benthic community and have an important role in consuming particulate organic matter (POM) and dissolved organic matter (DOM), with the subsequent production of detritus that is then shunted into a process now referred to as the “sponge‐loop.” An emergent species of sponge commonly found on Caribbean coral reefs,Agelas tubulata, increases in size and growth rate from shallow (< 30 m) to mesophotic depths (30–150 m) on Grand Cayman Island.A.tubulatadepends largely on heterotrophy across shallow to mesophotic depths and has been shown to utilize detritus on shallow reefs. However, detritus production byA.tubulataon shallow and mesophotic coral reefs has not been previously reported. Here we show, using flow cytometry, that sponge detritus includes a previously unquantified component, phytodetritus. Sponge phytodetritus production was shown experimentally to be greater in sponges from mesophotic depths compared to sponges from shallow coral reefs. Additionally, the size range of this phytodetritus corresponds to the size range of autotrophic picoplankton, primarily prochlorophytes, known to be an important food source for filter‐feeding sponges. Given the known lability of phytodetritus, compared to other more recalcitrant components of the detrital pool, its role in the food web of mesophotic communities combined with the increased availability of live POM, may be an underappreciated component of mesophotic community carbon and nitrogen flow.

    more » « less
  3. Mesophotic coral reef ecosystems (MCEs) are characterized by gradients in irradiance, temperature and trophic resources. As depth increases on Caribbean mesophotic reefs, particulate organic matter increases while dissolved organic matter decreases, and the increase in particulate organic matter is directly related to the increase in sponge abundances and growth rates on MCEs. To further understand the trophic ecology of sponges, changes in microbiome composition and function, stable isotopic composition and proximate biochemical composition of 4 Caribbean reef sponges ( Amphimedon compressa , Agelas tubulata , Plakortis angulospiculatus and Xestospongia muta) were quantified along a shallow to mesophotic depth gradient on Grand Cayman Island. Increases in δ 15 N for all sponges were observed as depth increased, indicating an increasing reliance on heterotrophic food resources. Species-specific changes in symbiotic microbial community composition were also observed as depth increased, and the predicted functional genes associated with nitrogen and carbon cycling showed species-specific changes between depths. Regardless of species-specific changes in microbiome community structure or function, or whether sponges were classified as high microbial or low microbial abundance, sponges increased their consumption of particulate organic matter with increasing depth into the lower mesophotic zone. 
    more » « less
  4. Abstract

    Sponges are animals that feed by filtering water through their perforated body. We examined the in situ diel dynamics of sponge metabolism by continuously measuring the oxygen concentrations in the water inhaled and exhaled by undisturbed sponges. A clear daily pattern of oxygen removal was evident for six of the seven species we studied with their nocturnal oxygen removal being almost double the diurnal values (+ 86 ± 57%). Oxygenic photosynthesis by the sponge's symbiotic or endolithic phototrophic microbes may explain some of the diel difference, but significant day–night differences were also observed in three sponge species for which no evidence of photosynthetic activity (tested with imaging pulse‐amplitude‐modulation Fluorometry) was found. Mean oxygen removal (± 95% confidence interval for the mean) per species ranged from 1.7 ± 1 μmol O2per liter (hereafter:μmol O2 L−1) for the low microbial abundance (LMA) spongeCallyspongia siphonellato 30.5 ± 10.5 μmol O2 L−1for the high microbial abundance HMA) spongeTheonella swinhoeiwith considerable variation in oxygen removal across all scales (minutes to hours, within and among specimens). Events of high oxygen removal (> 50 μmol L−1) were regularly observed for five of the seven species and were predominantly nocturnal, occasionally lasting several hours. The high variability in oxygen removal stresses the need for long‐term in‐situ measurements of benthic suspension feeders metabolism.

    more » « less
  5. Abstract

    Fundamental to holobiont biology is recognising how variation in microbial composition and function relates to host phenotypic variation. Sponges often exhibit considerable phenotypic plasticity and also harbour dense microbial communities that function to protect and nourish hosts. One of the most prominent sponge genera on Caribbean coral reefs isAgelas. Using a comprehensive set of morphological (growth form, spicule), chemical and molecular data on 13 recognised species ofAgelasin the Caribbean basin, we were able to define only five species (=clades) and found that many morphospecies designations were incongruent with phylogenomic and population genetic analyses. Microbial communities were also strongly differentiated between phylogenetic species, showing little evidence of cryptic divergence and relatively low correlation with morphospecies assignment. Metagenomic analyses also showed strong correspondence to phylogenetic species, and to a lesser extent, geographical and morphological characters. Surprisingly, the variation in secondary metabolites produced by sponge holobionts was explained by geography and morphospecies assignment, in addition to phylogenetic species, and covaried significantly with a subset of microbial symbionts. Spicule characteristics were highly plastic, under greater impact from geographical location than phylogeny. Our results suggest that while phenotypic plasticity is rampant inAgelas, morphological differences within phylogenetic species affect functionally important ecological traits, including the composition of the symbiotic microbial communities and metabolomic profiles.

    more » « less