skip to main content


This content will become publicly available on March 26, 2025

Title: Phylosymbiosis and metabolomics resolve phenotypically plastic and cryptic sponge species in the genus Agelas across the Caribbean basin
Abstract

Fundamental to holobiont biology is recognising how variation in microbial composition and function relates to host phenotypic variation. Sponges often exhibit considerable phenotypic plasticity and also harbour dense microbial communities that function to protect and nourish hosts. One of the most prominent sponge genera on Caribbean coral reefs isAgelas. Using a comprehensive set of morphological (growth form, spicule), chemical and molecular data on 13 recognised species ofAgelasin the Caribbean basin, we were able to define only five species (=clades) and found that many morphospecies designations were incongruent with phylogenomic and population genetic analyses. Microbial communities were also strongly differentiated between phylogenetic species, showing little evidence of cryptic divergence and relatively low correlation with morphospecies assignment. Metagenomic analyses also showed strong correspondence to phylogenetic species, and to a lesser extent, geographical and morphological characters. Surprisingly, the variation in secondary metabolites produced by sponge holobionts was explained by geography and morphospecies assignment, in addition to phylogenetic species, and covaried significantly with a subset of microbial symbionts. Spicule characteristics were highly plastic, under greater impact from geographical location than phylogeny. Our results suggest that while phenotypic plasticity is rampant inAgelas, morphological differences within phylogenetic species affect functionally important ecological traits, including the composition of the symbiotic microbial communities and metabolomic profiles.

 
more » « less
NSF-PAR ID:
10497044
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology
ISSN:
0962-1083
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mesophotic coral reef ecosystems (MCEs) are characterized by gradients in irradiance, temperature and trophic resources. As depth increases on Caribbean mesophotic reefs, particulate organic matter increases while dissolved organic matter decreases, and the increase in particulate organic matter is directly related to the increase in sponge abundances and growth rates on MCEs. To further understand the trophic ecology of sponges, changes in microbiome composition and function, stable isotopic composition and proximate biochemical composition of 4 Caribbean reef sponges ( Amphimedon compressa , Agelas tubulata , Plakortis angulospiculatus and Xestospongia muta) were quantified along a shallow to mesophotic depth gradient on Grand Cayman Island. Increases in δ 15 N for all sponges were observed as depth increased, indicating an increasing reliance on heterotrophic food resources. Species-specific changes in symbiotic microbial community composition were also observed as depth increased, and the predicted functional genes associated with nitrogen and carbon cycling showed species-specific changes between depths. Regardless of species-specific changes in microbiome community structure or function, or whether sponges were classified as high microbial or low microbial abundance, sponges increased their consumption of particulate organic matter with increasing depth into the lower mesophotic zone. 
    more » « less
  2. Abstract

    Long‐term environmental variation often drives local adaptation and leads to trait differentiation across populations. Additionally, when traits change in an environment‐dependent way through phenotypic plasticity, the genetic variation underlying plasticity will also be under selection. These processes could create a landscape of differentiation across populations in traits and their plasticity. Here, we performed a dry‐down experiment under controlled conditions to measure responses in seedlings of a shrub species from the Cape Floristic Region, the common sugarbush (Protea repens). We measured morphological and physiological traits, and sequenced whole transcriptomes of leaf tissues from eight populations that represent both the climatic and the geographical distribution of this species. We found that there is substantial variation in how populations respond to drought, but we also observed common patterns such as reduced leaf size and leaf thickness, and up‐regulation of stress‐related and down‐regulation of growth‐related gene groups. Both high environmental heterogeneity and milder source site climates were associated with higher plasticity in various traits and co‐expression gene networks. Associations between traits, trait plasticity, gene networks and the source site climate suggest that temperature may play a greater role in shaping these patterns when compared to precipitation, in line with recent changes in the region due to climate change. We also found that traits respond to climatic variation in an environment‐dependent manner: some associations between traits and climate were apparent only under certain growing conditions. Together, our results uncover common responses ofP. repenspopulations to drought, and climatic drivers of population differentiation in functional traits, gene expression and their plasticity.

     
    more » « less
  3. Abstract

    Sponges are a crucial component of Caribbean coral reef ecosystem structure and function. In the Caribbean, many sponges show a predictable increase in percent cover or abundance as depth increases from shallow (< 30 m) to mesophotic (30–150 m) depths. Given that sponge abundances are predicted to increase in the Caribbean as coral cover declines, understanding ecological factors that control their distribution is critical. Here we assess if sponge cover increases as depth increases into the mesophotic zone for three common Caribbean reef sponges,Xestospongia muta,Agelas tubulata, andPlakortis angulospiculatus, and use stable isotope analyses to determine whether shifts in trophic resource utilization along a shallow to mesophotic gradient occurred. Ecological surveys show that all target sponges significantly increase in percent cover as depth increases. Using bulk stable isotope analysis, we show that as depth increases there are increases in the δ13C and δ15N values, reflecting that all sponges consumed more heterotrophic picoplankton, with low C:N ratios in the mesophotic zone. However, compound‐specific isotope analysis of amino acids (CSIA‐AA) shows that there are species‐specific increases in δ13CAAand δ15NAAvalues.Xestospongia mutaandP. angulospiculatusshowed a reduced reliance on photoautotrophic resources as depth increased, whileA. tubulataappears to rely on heterotrophy at all depths. The δ13CAAand δ15NAAvalues of these sponges also reflect species‐specific patterns of host utilization of both POM and dissolved organic matter (DOM), its subsequent re‐synthesis, and translocation, by their microbiomes.

     
    more » « less
  4. Abstract

    Sponges are a diverse phylum of sessile filter‐feeding invertebrates that are abundant on Caribbean reefs and provide essential ecological services, including nutrient cycling, reef stabilization, habitat, and food for a variety of fishes and invertebrates. As prominent members of the benthic community, and thus potential food resources, factors determining the biochemical and energetic content of sponges will affect their trophic contributions to coral reef ecosystems. In order to evaluate the influence of geographic variation on biochemical composition and energetic content in the tissue of sponges, we collected several common and widespread species (Agelas conifera,Agelas tubulata,Amphimedon compressa,Aplysina cauliformis,Niphates amorpha,Niphates erecta, andXestospongia muta) from multiple shallow reefs in four countries across the Caribbean Basin, including Belize, Curaçao, Grand Cayman, and St. Croix, U.S. Virgin Islands. In addition, we correlated inherent species‐level traits, including the production of antipredator chemical defenses and the relative abundance of microbial symbionts, with biochemical and energetic content. We found that energetic content was higher in sponges with antipredator chemical defenses, and was significantly correlated with the concentration of chemical extracts from these sponges. We also noted that sponges with high microbial abundance contained significantly more soluble protein than sponges with low microbial abundance. Finally, both biochemical and energetic content varied significantly among sponges from different locations; sponges from Grand Cayman had the highest lipid and energetic content, whereas sponges from Belize had the highest carbohydrate content but lowest energetic content. Despite similar environmental conditions at these sites, our results demonstrate that biochemical and energetic content of sponges exhibits geographic variability, with potential implications for the trophic ecology of sponges throughout the Caribbean Basin.

     
    more » « less
  5. Abstract

    The plastic ability for a range of phenotypes to be exhibited by the same genotype allows organisms to respond to environmental variation and may modulate fitness in novel environments. Differing capacities for phenotypic plasticity within a population, apparent as genotype by environment interactions (GxE), can therefore have both ecological and evolutionary implications. Epigenetic gene regulation alters gene function in response to environmental cues without changes to the underlying genetic sequence and likely mediates phenotypic variation. DNA methylation is currently the most well described epigenetic mechanism and is related to transcriptional homeostasis in invertebrates. However, evidence quantitatively linking variation in DNA methylation with that of phenotype is lacking in some taxa, including reef‐building corals. In this study, spatial and seasonal environmental variation in Bonaire, Caribbean Netherlands was utilized to assess relationships between physiology and DNA methylation profiles within genetic clones across different genotypes ofAcropora cervicornisandA. palmatacorals. The physiology of both species was highly influenced by environmental variation compared to the effect of genotype. GxE effects on phenotype were only apparent inA. cervicornis. DNA methylation in both species differed between genotypes and seasons and epigenetic variation was significantly related to coral physiological metrics. Furthermore, plastic shifts in physiology across seasons were significantly positively correlated with shifts in DNA methylation profiles in both species. These results highlight the dynamic influence of environmental conditions and genetic constraints on the physiology of two important Caribbean coral species. Additionally, this study provides quantitative support for the role of epigenetic DNA methylation in mediating phenotypic plasticity in invertebrates.

     
    more » « less