This review presents current knowledge on applying bioelectrochemical sensors to monitor soil fertility through microbial activity and discusses future perspectives. Soil microbial activity is considered an indicator of soil fertility due to the interconnected relationship between soil nutrient composition, microbiome, and plant productivity. Similarities between soils and bioelectrochemical reactors provide the foundation for the design of bioelectrochemical sensors driven by microorganisms enriched as electrochemically active biofilms on polarized electrodes. The biofilm can exchange electrons with electrodes and metabolites with the nearby microbiome to generate electrochemical signals that inform of microbiome functions and nutrient bioavailability. Such mechanisms can be used as a bioelectrochemical sensor for proxy monitoring of soil fertility to address the need for real-time monitoring of soils.
more »
« less
Electrochemically Active Biofilms as an Indicator of Soil Health
Soil health is a complex phenomenon that reflects the ability of soil to support both plant growth and other ecosystem functions. To our knowledge, research on extracellular electron transfer processes in soil environments is limited and could provide novel knowledge and new ways of monitoring soil health. Electrochemical activities in the soil can be studied by inserting inert electrodes. Once the electrode is polarized to a favorable potential, nearby microorganisms attach to the electrodes and grow as biofilms. Biofilms are a major part of the soil and play critical roles in microbial activity and community dynamics. Our work aims to investigate the electrochemical behavior of healthy and unhealthy soils using chronoamperometry and cyclic voltammetry. We developed a bioelectrochemical soil reactor for electrochemical measurements using healthy and unhealthy soils taken from the Cook Agronomy Farm Long-Term Agroecological Research site; the soils showed similar physical and chemical characteristics, but there was higher plant growth where the healthy soil was taken. Using carbon cloth electrodes installed in these soil reactors, we explored the electrochemical signals in these two soils. First, we measured redox variations by depth and found that reducing conditions were prevalent in healthy soils. Current measurements showed distinct differences between healthy and unhealthy soils. Scanning electron microscopy images showed the presence of microbes attached to the electrode for healthy soil but not for unhealthy soil. Glucose addition stimulated current in both soil types and caused differences in cyclic voltammograms between the two soil types to converge. Our work demonstrates that we can use current as a proxy for microbial metabolic activity to distinguish healthy and unhealthy soil.
more »
« less
- Award ID(s):
- 1706889
- PAR ID:
- 10379830
- Date Published:
- Journal Name:
- Journal of The Electrochemical Society
- Volume:
- 168
- Issue:
- 8
- ISSN:
- 0013-4651
- Page Range / eLocation ID:
- 087511
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Spear, John R. (Ed.)ABSTRACT Adaptation of soil microbes due to warming from climate change has been observed, but it remains unknown what microbial growth traits are adaptive to warming. We studied bacterial isolates from the Harvard Forest Long-Term Ecological Research site, where field soils have been experimentally heated to 5°C above ambient temperature with unheated controls for 30 years. We hypothesized that Alphaproteobacteria from warmed plots have (i) less temperature-sensitive growth rates; (ii) higher optimum growth temperatures; and (iii) higher maximum growth temperatures compared to isolates from control plots. We made high-throughput measurements of bacterial growth in liquid cultures over time and across temperatures from 22°C to 37°C in 2–3°C increments. We estimated growth rates by fitting Gompertz models to the growth data. Temperature sensitivity of growth rate, optimum growth temperature, and maximum growth temperature were estimated by the Ratkowsky 1983 model and a modified Macromolecular Rate Theory (MMRT) model. To determine evidence of adaptation, we ran phylogenetic generalized least squares tests on isolates from warmed and control soils. Our results showed evidence of adaptation of higher optimum growth temperature of bacterial isolates from heated soils. However, we observed no evidence of adaptation of temperature sensitivity of growth and maximum growth temperature. Our project begins to capture the shape of the temperature response curves, but illustrates that the relationship between growth and temperature is complex and cannot be limited to a single point in the biokinetic range. IMPORTANCESoils are the largest terrestrial carbon sink and the foundation of our food, fiber, and fuel systems. Healthy soils are carbon sinks, storing more carbon than they release. This reduces the amount of carbon dioxide released into the atmosphere and buffers against climate change. Soil microbes drive biogeochemical cycling and contribute to soil health through organic matter breakdown, plant growth promotion, and nutrient distribution. In this study, we determined how soil microbial growth traits respond to long-term soil warming. We found that bacterial isolates from warmed plots showed evidence of adaptation of optimum growth temperature. This suggests that increased microbial biomass and growth in a warming world could result in greater carbon storage. As temperatures increase, greater microbial activity may help reduce the soil carbon feedback loop. Our results provide insight on how atmospheric carbon cycling and soil health may respond in a warming world.more » « less
-
Semrau, Jeremy D. (Ed.)ABSTRACT This study investigated the differences in microbial community abundance, composition, and diversity throughout the depth profiles in soils collected from corn and soybean fields in Iowa (United States) using 16S rRNA amplicon sequencing. The results revealed decreased richness and diversity in microbial communities at increasing soil depth. Soil microbial community composition differed due to crop type only in the top 60 cm and due to location only in the top 90 cm. While the relative abundance of most phyla decreased in deep soils, the relative abundance of the phylum Proteobacteria increased and dominated agricultural soils below the depth of 90 cm. Although soil depth was the most important factor shaping microbial communities, edaphic factors, including soil organic matter, soil bulk density, and the length of time that deep soils were saturated with water, were all significant factors explaining the variation in soil microbial community composition. Soil organic matter showed the highest correlation with the exponential decrease in bacterial abundance with depth. A greater understanding of how soil depth influences the diversity and composition of soil microbial communities is vital for guiding sampling approaches in agricultural soils where plant roots extend beyond the upper soil profile. In the long term, a greater knowledge of the influence of depth on microbial communities should contribute to new strategies that enhance the sustainability of soil, which is a precious resource for food security. IMPORTANCE Determining how microbial properties change across different soils and within the soil depth profile will be potentially beneficial to understanding the long-term processes that are involved in the health of agricultural ecosystems. Most literature on soil microbes has been restricted to the easily accessible surface soils. However, deep soils are important in soil formation, carbon sequestration, and providing nutrients and water for plants. In the most productive agricultural systems in the United States where soybean and corn are grown, crop plant roots extend into the deeper regions of soils (>100 cm), but little is known about the taxonomic diversity or the factors that shape deep-soil microbial communities. The findings reported here highlight the importance of soil depth in shaping microbial communities, provide new information about edaphic factors that influence the deep-soil communities, and reveal more detailed information on taxa that exist in deep agricultural soils.more » « less
-
Soil anoxia is common in the annually thawed surface (‘active’) layer of permafrost soils, particularly when soils are saturated, and supports anaerobic microbial metabolism and methane (CH4) production. Rainfall contributes to soil saturation, but can also introduce oxygen, causing soil oxidation and altering anoxic conditions. We simulated a rainfall event in soil mesocosms from two dominant tundra types, tussock tundra and wet sedge tundra, to test the impacts of rainfall‐induced soil oxidation on microbial communities and their metabolic capacity for anaerobic CH4 production and aerobic respiration following soil oxidation. In both types, rainfall increased total soil O2 concentration, but in tussock tundra there was a 2.5‐fold greater increase in soil O2 compared to wet sedge tundra due to differences in soil drainage. Metagenomic and metatranscriptomic analyses found divergent microbial responses to rainfall between tundra types. Active microbial taxa in the tussock tundra community, including bacteria and fungi, responded to rainfall with a decline in gene expression for anaerobic metabolism and a concurrent increase in gene expression for cellular growth. In contrast, the wet sedge tundra community showed no significant changes in microbial gene expression from anaerobic metabolism, fermentation, or methanogenesis following rainfall, despite an initial increase in soil O2 concentration. These results suggest that rainfall induces soil oxidation and enhances aerobic microbial respiration in tussock tundra communities but may not accumulate or remain in wet sedge tundra soils long enough to induce a community‐wide shift from anaerobic metabolism. Thus, rainfall may serve only to maintain saturated soil conditions that promote CH4 production in low‐lying wet sedge tundra soils across the Arctic.more » « less
-
Miniaturization of measurement systems offers several advantages, including reduced sample and reagent volumes, improved control over experimental conditions, and the ability to multiplex complementary measurement modalities, thereby enabling new types of studies in microbial electrochemistry. We present a scalable glass-based microfluidic bioelectrochemical cell (µ-BEC) platform for multiplexed investigations of microbial extracellular electron uptake (EEU). The platform integrates eight independently addressable three-electrode cells in a 2×4 array, with transparent working electrodes that support simultaneous electrochemical analysis and optical imaging. Using Rhodopseudomonas palustris TIE-1 as a model phototroph, we measured EEU activity under light-dark cycling. Microfluidic flow was used to selectively remove planktonic cells, enabling isolation of the electron uptake signal associated with surface attached cells. These results demonstrate the µ-BEC as a robust and adaptable platform for probing microbial electron transfer, with broad potential for high-throughput and multimodal studies.more » « less
An official website of the United States government

