Microbes are responsible for cycling carbon (C) through soils, and predicted changes in soil C stocks under climate change are highly sensitive to shifts in the mechanisms assumed to control the microbial physiological response to warming. Two mechanisms have been suggested to explain the long- term warming impact on microbial physiology: microbial thermal acclimation and changes in the quantity and quality of substrates available for microbial metabolism. Yet studies disentangling these two mechanisms are lacking. To resolve the drivers of changes in microbial physiology in response to long- term warming, we sampled soils from 13- and 28- year- old soil warming experiments in different seasons. We performed short- term laboratory incubations across a range of temperatures to measure the relationships between temperature sensitivity of physiology (growth, respiration, carbon use efficiency, and extracellular enzyme activity) and the chemical composition of soil organic matter. We observed apparent thermal acclimation of microbial respiration, but only in summer, when warming had exacerbated the seasonally- induced, already small dissolved organic matter pools. Irrespective of warming, greater quantity and quality of soil carbon increased the extracellular enzymatic pool and its temperature sensitivity. We propose that fresh litter input into the system seasonally cancels apparent thermal acclimation of C- cycling processes to decadal warming. Our findings reveal that long-term warming has indirectly affected microbial physiology via reduced C availability in this system, implying that earth system models including these negative feedbacks may be best suited to describe long- term warming effects on these soils.
more »
« less
Thermal adaptation of soil microbial growth traits in response to chronic warming
ABSTRACT Adaptation of soil microbes due to warming from climate change has been observed, but it remains unknown what microbial growth traits are adaptive to warming. We studied bacterial isolates from the Harvard Forest Long-Term Ecological Research site, where field soils have been experimentally heated to 5°C above ambient temperature with unheated controls for 30 years. We hypothesized that Alphaproteobacteria from warmed plots have (i) less temperature-sensitive growth rates; (ii) higher optimum growth temperatures; and (iii) higher maximum growth temperatures compared to isolates from control plots. We made high-throughput measurements of bacterial growth in liquid cultures over time and across temperatures from 22°C to 37°C in 2–3°C increments. We estimated growth rates by fitting Gompertz models to the growth data. Temperature sensitivity of growth rate, optimum growth temperature, and maximum growth temperature were estimated by the Ratkowsky 1983 model and a modified Macromolecular Rate Theory (MMRT) model. To determine evidence of adaptation, we ran phylogenetic generalized least squares tests on isolates from warmed and control soils. Our results showed evidence of adaptation of higher optimum growth temperature of bacterial isolates from heated soils. However, we observed no evidence of adaptation of temperature sensitivity of growth and maximum growth temperature. Our project begins to capture the shape of the temperature response curves, but illustrates that the relationship between growth and temperature is complex and cannot be limited to a single point in the biokinetic range. IMPORTANCESoils are the largest terrestrial carbon sink and the foundation of our food, fiber, and fuel systems. Healthy soils are carbon sinks, storing more carbon than they release. This reduces the amount of carbon dioxide released into the atmosphere and buffers against climate change. Soil microbes drive biogeochemical cycling and contribute to soil health through organic matter breakdown, plant growth promotion, and nutrient distribution. In this study, we determined how soil microbial growth traits respond to long-term soil warming. We found that bacterial isolates from warmed plots showed evidence of adaptation of optimum growth temperature. This suggests that increased microbial biomass and growth in a warming world could result in greater carbon storage. As temperatures increase, greater microbial activity may help reduce the soil carbon feedback loop. Our results provide insight on how atmospheric carbon cycling and soil health may respond in a warming world.
more »
« less
- PAR ID:
- 10499611
- Editor(s):
- Spear, John R.
- Publisher / Repository:
- American Society of Microbiology
- Date Published:
- Journal Name:
- Applied and Environmental Microbiology
- Volume:
- 89
- Issue:
- 11
- ISSN:
- 0099-2240
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Climate change may alter soil microbial communities and soil organic matter (SOM) composition. Soil carbon (C) cycling takes place over multiple time scales; therefore, long-term studies are essential to better understand the factors influencing C storage and help predict responses to climate change. To investigate this further, soils that were heated by 5 °C above ambient soil temperatures for 18 years were collected from the Barre Woods Soil Warming Study at the Harvard Forest Long-term Ecological Research site. This site consists of large 30 × 30 m plots (control or heated) where entire root systems are exposed to sustained warming conditions. Measurements included soil C and nitrogen concentrations, microbial biomass, and SOM chemistry using gas chromatography–mass spectrometry and solid-state13C nuclear magnetic resonance spectroscopy. These complementary techniques provide a holistic overview of all SOM components and a comprehensive understanding of SOM composition at the molecular-level. Our results showed that soil C concentrations were not significantly altered with warming; however, various molecular-level alterations to SOM chemistry were observed. We found evidence for both enhanced SOM decomposition and increased above-ground plant inputs with long-term warming. We also noted shifts in microbial community composition while microbial biomass remained largely unchanged. These findings suggest that prolonged warming induced increased availability of preferred substrates, leading to shifts in the microbial community and SOM biogeochemistry. The observed increase in gram-positive bacteria indicated changes in substrate availability as gram-positive bacteria are often associated with the decomposition of complex organic matter, while gram-negative bacteria preferentially break down simpler organic compounds altering SOM composition over time. Our results also highlight that additional plant inputs do not effectively offset chronic warming-induced SOM decomposition in temperate forests.more » « less
-
Terrestrial ecosystems are an important carbon store, and this carbon is vulnerable to microbial degradation with climate warming. After 30 years of experimental warming, carbon stocks in a temperate mixed deciduous forest were observed to be reduced by 30% in the heated plots relative to the controls. In addition, soil respiration was seasonal, as was the warming treatment effect. We therefore hypothesized that long-term warming will have higher expressions of genes related to carbohydrate and lipid metabolism due to increased utilization of recalcitrant carbon pools compared to controls. Because of the seasonal effect of soil respiration and the warming treatment, we further hypothesized that these patterns will be seasonal. We used RNA sequencing to show how the microbial community responds to long-term warming (~30 years) in Harvard Forest, MA. Total RNA was extracted from mineral and organic soil types from two treatment plots (+5°C heated and ambient control), at two time points (June and October) and sequenced using Illumina NextSeq technology. Treatment had a larger effect size on KEGG annotated transcripts than on CAZymes, while soil types more strongly affected CAZymes than KEGG annotated transcripts, though effect sizes overall were small. Although, warming showed a small effect on overall CAZymes expression, several carbohydrate-associated enzymes showed increased expression in heated soils (~68% of all differentially expressed transcripts). Further, exploratory analysis using an unconstrained method showed increased abundances of enzymes related to polysaccharide and lipid metabolism and decomposition in heated soils. Compared to long-term warming, we detected a relatively small effect of seasonal variation on community gene expression. Together, these results indicate that the higher carbohydrate degrading potential of bacteria in heated plots can possibly accelerate a self-reinforcing carbon cycle-temperature feedback in a warming climate.more » « less
-
Abstract Soil microbial traits drive ecosystem functions, which can explain the positive correlation between microbial functional diversity and ecosystem function. However, microbial adaptation to climate change related warming stress can shift microbial traits with direct implications for soil carbon cycling. Here, we investigated how long-term warming affects the relationship between microbial trait diversity and ecosystem function. Soils were sampled after 24 years of +5°C warming alongside unheated control soils from the Harvard Forest Long-Term Ecological Research site. Ecosystem function was estimated from six different enzyme activities and microbial biomass. Functional diversity was calculated from metatranscriptomics sequencing, where reads were assigned to yield, acquisition, or stress trait categories. We found that in organic horizon soils, warming decreased the richness of acquisition-related traits. In the mineral soils, we observed that heated soils exhibited a negative relationship with the richness of acquisition-related traits. These results suggest that microbial communities exposed to long-term warming are shifting away from a resource acquisition life history strategy.more » « less
-
Vegetation change of the Arctic tundra due to global warming is a well-known process, but the implication for the belowground microbial communities, key in nutrient cycling and decomposition, is poorly understood. We characterized the fungal and bacterial abundances in litter and soil layers across 16 warming experimental sites at 12 circumpolar locations. We investigated the relationship between microbial abundances and nitrogen (N) and carbon (C) isotopic signatures, indicating shifts in microbial processes with warming. Microbial abundances were 2–3 orders of magnitude larger in litter than in soil. Local, site-dependent responses of microbial abundances were variable, and no general effect of warming was detected. The only generalizable trend across sites was a dependence between the warming response ratios and C:N ratio in controls, highlighting a legacy of the vegetation on the microbial response to warming. We detected a positive effect of warming on the litter mass and δ 15 N, which was linked to bacterial abundance under warmed conditions. This effect was stronger in experimental sites dominated by deciduous shrubs, suggesting an altered bacterial N-cycling with increased temperatures, mediated by the vegetation, and with possible consequences on ecosystem feedbacks to climate change.more » « less