skip to main content

Title: Coastal upwelling generates cryptic temperature refugia
Abstract

Understanding the effects of climate-mediated environmental variation on the distribution of organisms is critically important in an era of global change. We used wavelet analysis to quantify the spatiotemporal (co)variation in daily water temperature for predicting the distribution of cryptic refugia across 16 intertidal sites that were characterized as ‘no’, ‘weak’ or ‘strong’ upwelling and spanned 2000 km of the European Atlantic Coast. Sites experiencing weak upwelling exhibited high synchrony in temperature but low levels of co-variability at monthly to weekly timescales, whereas the opposite was true for sites experiencing strong upwelling. This suggests upwelling generates temporal thermal refugia that can promote organismal performance by both supplying colder water that mitigates thermal stress during hot Summer months and ensuring high levels of fine-scale variation in temperature that reduce the duration of thermal extremes. Additionally, pairwise correlograms based on the Pearson-product moment correlation coefficient and wavelet coherence revealed scale dependent trends in temperature fluctuations across space, with a rapid decay in strong upwelling sites at monthly and weekly timescales. This suggests upwelling also generates spatial thermal refugia that can ‘rescue’ populations from unfavorable conditions at local and regional scales. Overall, this study highlights the importance of identifying cryptic spatiotemporal refugia that more » emerge from fine-scale environmental variation to map potential patterns of organismal performance in a rapidly changing world.

« less
Authors:
; ; ; ; ;
Award ID(s):
2048894
Publication Date:
NSF-PAR ID:
10379861
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Solar-Induced Chlorophyll Fluorescence (SIF) can provide key information about the state of photosynthesis and offers the prospect of defining remote sensing-based estimation of Gross Primary Production (GPP). There is strong theoretical support for the link between SIF and GPP and this relationship has been empirically demonstrated using ground-based, airborne, and satellite-based SIF observations, as well as modeling. However, most evaluations have been based on monthly and annual scales, yet the GPP:SIF relations can be strongly influenced by both vegetation structure and physiology. At the monthly timescales, the structural response often dominates but short-term physiological variations can strongly impact the GPP:SIF relations. Here, we test how well SIF can predict the inter-daily variation of GPP during the growing season and under stress conditions, while taking into account the local effect of sites and abiotic conditions. We compare the accuracy of GPP predictions from SIF at different timescales (half-hourly, daily, and weekly), while evaluating effect of adding environmental variables to the relationship. We utilize observations for years 2018–2019 at 31 mid-latitudes, forested, eddy covariance (EC) flux sites in North America and Europe and use TROPOMI satellite data for SIF. Our results show that SIF is a good predictor of GPP, when accountingmore »for inter-site variation, probably due to differences in canopy structure. Seasonally averaged leaf area index, fraction of absorbed photosynthetically active radiation (fPAR) and canopy conductance provide a predictor to the site-level effect. We show that fPAR is the main factor driving errors in the linear model at high temporal resolution. Adding water stress indicators, namely canopy conductance, to a multi-linear SIF-based GPP model provides the best improvement in the model precision at the three considered timescales, showing the importance of accounting for water stress in GPP predictions, independent of the SIF signal. SIF is a promising predictor for GPP among other remote sensing variables, but more focus should be placed on including canopy structure, and water stress effects in the relationship, especially when considering intra-seasonal, and inter- and intra-daily resolutions.« less
  2. Abstract. Watershed-scale stream temperature models are often one-dimensional because they require fewer data and are more computationally efficient than two- or three-dimensional models. However, one-dimensional models assume completely mixed reaches and ignore small-scale spatial temperature variability, which may create temperature barriers or refugia for cold-water aquatic species. Fine spatial- and temporal-resolution stream temperature monitoring provides information to identify river features with increased thermal variability. We used distributed temperature sensing (DTS) to observe small-scale stream temperature variability, measured as a temperature range through space and time, within two 400 m reaches in summer 2015 in Nevada's East Walker and main stem Walker rivers. Thermal infrared (TIR) aerial imagery collected in summer 2012 quantified the spatial temperature variability throughout the Walker Basin. We coupled both types of high-resolution measured data with simulated stream temperatures to corroborate model results and estimate the spatial distribution of thermal refugia for Lahontan cutthroat trout and other cold-water species. Temperature model estimates were within the DTS-measured temperature ranges 21 % and 70 % of the time for the East Walker River and main stem Walker River, respectively, and within TIR-measured temperatures 17 %, 5 %, and 5 % of the time for the East Walker, West Walker, and main stem Walker rivers, respectively. DTS, TIR, and modeledmore »stream temperatures in the main stem Walker River nearly always exceeded the 21 ∘C optimal temperature threshold for adult trout, usually exceeded the 24 ∘C stress threshold, and could exceed the 28 ∘C lethal threshold for Lahontan cutthroat trout. Measured stream temperature ranges bracketed ambient river temperatures by −10.1 to +2.3 ∘C in agricultural return flows, −1.2 to +4 ∘C at diversions, −5.1 to +2 ∘C in beaver dams, and −4.2 to 0 ∘C at seeps. To better understand the role of these river features on thermal refugia during warm time periods, the respective temperature ranges were added to simulated stream temperatures at each of the identified river features. Based on this analysis, the average distance between thermal refugia in this system was 2.8 km. While simulated stream temperatures are often too warm to support Lahontan cutthroat trout and other cold-water species, thermal refugia may exist to improve habitat connectivity and facilitate trout movement between spawning and summer habitats. Overall, high-resolution DTS and TIR measurements quantify temperature ranges of refugia and augment process-based modeling.« less
  3. Phenotypic plasticity and adaptive evolution enable population persistence in response to global change. However, there are few experiments that test how these processes interact within and across generations, especially in marine species with broad distributions experiencing spatially and temporally variable temperature and p CO 2 . We employed a quantitative genetics experiment with the purple sea urchin, Strongylocentrotus purpuratus , to decompose family-level variation in transgenerational and developmental plastic responses to ecologically relevant temperature and p CO 2 . Adults were conditioned to controlled non-upwelling (high temperature, low p CO 2 ) or upwelling (low temperature, high p CO 2 ) conditions. Embryos were reared in either the same conditions as their parents or the crossed environment, and morphological aspects of larval body size were quantified. We find evidence of family-level phenotypic plasticity in response to different developmental environments. Among developmental environments, there was substantial additive genetic variance for one body size metric when larvae developed under upwelling conditions, although this differed based on parental environment. Furthermore, cross-environment correlations indicate significant variance for genotype-by-environment interactive effects. Therefore, genetic variation for plasticity is evident in early stages of S. purpuratus , emphasizing the importance of adaptive evolution and phenotypic plasticity inmore »organismal responses to global change.« less
  4. Upwelling provides high amounts of nutrients that support primary production in coastal habitats, including giant kelp Macrocystis pyrifera forests. Growth and recruitment of kelp forests are controlled by environmental conditions, including temperature, nutrient availability, and storms, as well as biotic interactions. However, our understanding of juvenile persistence in the field is extremely limited, particularly the effects of grazing on the survival of early kelp stages and how environmental variability associated with upwelling dynamics may modulate grazing effects. We quantified herbivore impacts on juvenile M. pyrifera by deploying thirteen 24 h caging experiments approximately every 2 wk throughout the upwelling season in a giant kelp forest in Monterey Bay, CA, USA. Experiments spanned a range of natural environmental variation in oxygen, pH, and temperature, conditions known to affect grazer physiology and that are projected to become more extreme under global climate change. Overall, the herbivore community had a large effect on kelp survival, with 68.5% of juvenile kelp removed on average across experiments. Grazing increased throughout the season, which was most strongly correlated with decreasing monthly oxygen variance and weakly correlated with decreasing monthly pH variance and increasing temperature. This suggests that large swings in oxygen during peak kelp recruitment inmore »spring may provide a temporal refuge from grazing, allowing kelp to reach larger sizes by late summer and fall when upwelling has relaxed. This study highlights the potential of current environmental variability, and its predicted increase under future scenarios, to mediate species interactions and habitat persistence.« less
  5. Peatlands store substantial amounts of carbon and are vulnerable to climate change. We present a modified version of the Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) land surface model for simulating the hydrology, surface energy, and CO2 fluxes of peatlands on daily to annual timescales. The model includes a separate soil tile in each 0.5° grid cell, defined from a global peatland map and identified with peat-specific soil hydraulic properties. Runoff from non-peat vegetation within a grid cell containing a fraction of peat is routed to this peat soil tile, which maintains shallow water tables. The water table position separates oxic from anoxic decomposition. The model was evaluated against eddy-covariance (EC) observations from 30 northern peatland sites, with the maximum rate of carboxylation (Vcmax) being optimized at each site. Regarding short-term day-to-day variations, the model performance was good for gross primary production (GPP) (r2 =  0.76; Nash–Sutcliffe modeling efficiency, MEF  =  0.76) and ecosystem respiration (ER, r2 =  0.78, MEF  =  0.75), with lesser accuracy for latent heat fluxes (LE, r2 =  0.42, MEF  =  0.14) and and net ecosystem CO2 exchange (NEE, r2 =  0.38, MEF  =  0.26). Seasonal variations in GPP, ER, NEE, and energy fluxes on monthly scales showed moderate to high r2 values (0.57–0.86). For spatial across-site gradients of annual meanmore »GPP, ER, NEE, and LE, r2 values of 0.93, 0.89, 0.27, and 0.71 were achieved, respectively. Water table (WT) variation was not well predicted (r2 < 0.1), likely due to the uncertain water input to the peat from surrounding areas. However, the poor performance of WT simulation did not greatly affect predictions of ER and NEE. We found a significant relationship between optimized Vcmax and latitude (temperature), which better reflects the spatial gradients of annual NEE than using an average Vcmax value.« less