Understanding the effects of climate-mediated environmental variation on the distribution of organisms is critically important in an era of global change. We used wavelet analysis to quantify the spatiotemporal (co)variation in daily water temperature for predicting the distribution of cryptic refugia across 16 intertidal sites that were characterized as ‘no’, ‘weak’ or ‘strong’ upwelling and spanned 2000 km of the European Atlantic Coast. Sites experiencing weak upwelling exhibited high synchrony in temperature but low levels of co-variability at monthly to weekly timescales, whereas the opposite was true for sites experiencing strong upwelling. This suggests upwelling generates temporal thermal refugia that can promote organismal performance by both supplying colder water that mitigates thermal stress during hot Summer months and ensuring high levels of fine-scale variation in temperature that reduce the duration of thermal extremes. Additionally, pairwise correlograms based on the Pearson-product moment correlation coefficient and wavelet coherence revealed scale dependent trends in temperature fluctuations across space, with a rapid decay in strong upwelling sites at monthly and weekly timescales. This suggests upwelling also generates spatial thermal refugia that can ‘rescue’ populations from unfavorable conditions at local and regional scales. Overall, this study highlights the importance of identifying cryptic spatiotemporal refugia that emerge from fine-scale environmental variation to map potential patterns of organismal performance in a rapidly changing world.
Body temperature is universally recognized as a dominant driver of biological performance. Although the critical distinction between the temperature of an organism and its surrounding habitat has long been recognized, it remains common practice to assume that trends in air temperature—collected via remote sensing or weather stations—are diagnostic of trends in animal temperature and thus of spatiotemporal patterns of physiological stress and mortality risk. Here, by analysing long-term trends recorded by biomimetic temperature sensors designed to emulate intertidal mussel temperature across the US Pacific Coast, we show that trends in maximal organismal temperature (‘organismal climatologies’) during aerial exposure can differ substantially from those exhibited by co-located environmental data products. Specifically, using linear regression to compare maximal organismal and environmental (air temperature) climatologies, we show that not only are the magnitudes of body and air temperature markedly different, as expected, but so are their temporal trends at both local and biogeographic scales, with some sites showing significant decadal-scale increases in organismal temperature despite reductions in air temperature, or vice versa. The idiosyncratic relationship between the spatiotemporal patterns of organismal and air temperatures suggests that environmental climatology cannot be statistically corrected to serve as an accurate proxy for organismal climatology. Finally, using quantile regression, we show that spatiotemporal trends vary across the distribution of organismal temperature, with extremes shifting in different directions and at different rates than average metrics. Overall, our results highlight the importance of quantifying changes in the entire distribution of temperature to better predict biological performance and dispel the notion that raw or ‘corrected’ environmental (and specially air temperature) climatologies can be used to predict organismal temperature trends. Hence, despite their widespread coverage and availability, the severe limitations of environmental climatologies suggest that their role in conservation and management policy should be carefully considered.
more » « less- Award ID(s):
- 2048894
- NSF-PAR ID:
- 10508843
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Conservation Physiology
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2051-1434
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Spatiotemporal variability in primary producer growth rates is a fundamental aspect of community structure. Understanding drivers of these patterns and their response to climate variability and change are ongoing challenges. Nutrient and light limitations often are invoked as proximate drivers of these patterns, but many other environmental and biological factors vary across spatial and temporal scales. In temperate rocky intertidal habitats, macrophytes are major space occupiers and the base of the food web, and thus their patterns of primary production relate directly to their functions and services in these communities. We investigated spatiotemporal patterns of the primary production of two species of macrophytes, the kelp
Hedophyllum sessile and the surfgrassPhyllospadix scouleri , across 908 km of Oregon and California coastline. Spatiotemporal variability in macrophyte growth rates and their relationships to regional or local‐scale environmental variables (upwelling, nutrients, temperature, light, phytoplankton blooms) and climate regimes were explored. Paradoxically, we found that both warmer water temperature (e.g., warm phases of climate patterns, weaker upwelling) and increased nutrients (e.g., with stronger upwelling) increased macrophyte productivity. Kelp growth decreased with dense phytoplankton blooms, while surfgrass growth decreased with increasing air temperature. Growth rates reflected tissue elemental content in surfgrass but only weakly in kelp. Hence, as climate warms and/or if upwelling intensifies, productivity of these and perhaps other macrophytes should increase, at least until thermal conditions, particularly low tide air temperature, become too stressful. -
Summary Spatiotemporal patterns of phenology may be affected by mosaics of environmental and genetic variation. Environmental drivers may have temporally lagged impacts, but patterns and mechanisms remain poorly known.
We combine multiple genomic, remotely sensed, and physically modeled datasets to determine the spatiotemporal patterns and drivers of canopy phenology in quaking aspen, a widespread clonal dioecious tree species with diploid and triploid cytotypes.
We show that over 391 km2of southwestern Colorado: greenup date, greendown date, and growing season length vary by weeks and differ across sexes, cytotypes, and genotypes; phenology has high phenotypic plasticity and heritabilities of 31–61% (interquartile range); and snowmelt date, soil moisture, and air temperature predict phenology, at temporal lags of up to 3 yr.
Our study shows that lagged environmental effects are needed to explain phenological variation and that the effect of cytotype on phenology is obscured by its correlation with topography. Phenological patterns are consistent with responses to multiyear accumulation of carbon deficit or hydraulic damage.
-
Hines, Heather (Ed.)Abstract Biogeographic clines in morphology along environmental gradients can illuminate forces influencing trait evolution within and between species. Latitude has long been studied as a driver of morphological clines, with a focus on body size and temperature. However, counteracting environmental pressures may impose constraints on body size. In montane landscapes, declines in air density with elevation can negatively impact flight performance in volant species, which may contribute to selection for reduced body mass despite declining temperatures. We examine morphology in two bumble bee (Hymenoptera: Apidae: Bombus Latreille) species, Bombus vancouverensis Cresson and Bombus vosnesenskii Radoszkowski, across mountainous regions of California, Oregon, and Washington, United States. We incorporate population genomic data to investigate the relationship between genomic ancestry and morphological divergence. We find that B. vancouverensis, which tends to be more specialized for high elevations, exhibits stronger spatial-environmental variation, being smaller in the southern and higher elevation parts of its range and having reduced wing loading (mass relative to wing area) at high elevations. Bombus vosnesenskii, which is more of an elevational generalist, has substantial trait variation, but spatial-environmental correlations are weak. Population structure is stronger in the smaller B. vancouverensis, and we find a significant association between elevation and wing loading after accounting for genetic structure, suggesting the possibility of local adaptation for this flight performance trait. Our findings suggest that some conflicting results for body size trends may stem from distinct environmental pressures that impact different aspects of bumble bee ecology, and that different species show different morphological clines in the same region.more » « less
-
Abstract Parameters describing the negative relationship between abundance and body size within ecological communities provide a summary of many important biological processes. While it is considered to be one of the few consistent patterns in ecology, spatiotemporal variation of this relationship across continental scale temperature gradients is unknown. Using a database of stream communities collected across North America (18–68°N latitude, −4 to 25°C mean annual air temperature) over 3 years, we constructed 160 individual size distribution (ISD) relationships (i.e. abundance size spectra). The exponent parameter describing ISD’s decreased (became steeper) with increasing mean annual temperature, with median slopes varying by ~0.2 units across the 29°C temperature gradient. In addition, total community biomass increased with increasing temperatures, contrary with theoretical predictions. Our study suggests conservation of ISD relationships in streams across broad natural environmental gradients. This supports the emerging use of size‐spectra deviations as indicators of fundamental changes to the structure and function of ecological communities.