skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Real-time brain-machine interface in non-human primates achieves high-velocity prosthetic finger movements using a shallow feedforward neural network decoder
Abstract Despite the rapid progress and interest in brain-machine interfaces that restore motor function, the performance of prosthetic fingers and limbs has yet to mimic native function. The algorithm that converts brain signals to a control signal for the prosthetic device is one of the limitations in achieving rapid and realistic finger movements. To achieve more realistic finger movements, we developed a shallow feed-forward neural network to decode real-time two-degree-of-freedom finger movements in two adult male rhesus macaques. Using a two-step training method, a recalibrated feedback intention–trained (ReFIT) neural network is introduced to further improve performance. In 7 days of testing across two animals, neural network decoders, with higher-velocity and more natural appearing finger movements, achieved a 36% increase in throughput over the ReFIT Kalman filter, which represents the current standard. The neural network decoders introduced herein demonstrate real-time decoding of continuous movements at a level superior to the current state-of-the-art and could provide a starting point to using neural networks for the development of more naturalistic brain-controlled prostheses.  more » « less
Award ID(s):
1926576
PAR ID:
10379910
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Objective.While brain–machine interfaces (BMIs) are promising technologies that could provide direct pathways for controlling the external world and thus regaining motor capabilities, their effectiveness is hampered by decoding errors. Previous research has demonstrated the detection and correction of BMI outcome errors, which occur at the end of trials. Here we focus on continuous detection and correction of BMI execution errors, which occur during real-time movements.Approach.Two adult male rhesus macaques were implanted with Utah arrays in the motor cortex. The monkeys performed single or two-finger group BMI tasks where a Kalman filter decoded binned spiking-band power into intended finger kinematics. Neural activity was analyzed to determine how it depends not only on the kinematics of the fingers, but also on the distance of each finger-group to its target. We developed a method to detect erroneous movements, i.e. consistent movements away from the target, from the same neural activity used by the Kalman filter. Detected errors were corrected by a simple stopping strategy, and the effect on performance was evaluated.Mainresults.First we show that including distance to target explains significantly more variance of the recorded neural activity. Then, for the first time, we demonstrate that neural activity in motor cortex can be used to detect execution errors during BMI controlled movements. Keeping false positive rate below 5 % , it was possible to achieve mean true positive rate of 28.1 % online. Despite requiring 200 ms to detect and react to suspected errors, we were able to achieve a significant improvement in task performance via reduced orbiting time of one finger group.Significance.Neural activity recorded in motor cortex for BMI control can be used to detect and correct BMI errors and thus to improve performance. Further improvements may be obtained by enhancing classification and correction strategies. 
    more » « less
  2. A key factor in the clinical translation of brain-machine interfaces (BMIs) for restoring hand motor function will be their robustness to changes in a task. With functional electrical stimulation (FES) for example, the patient’s own hand will be used to produce a wide range of forces in otherwise similar movements. To investigate the impact of task changes on BMI performance, we trained two rhesus macaques to control a virtual hand with their physical hand while we added springs to each finger group (index or middle-ring-small) or altered their wrist posture. Using simultaneously recorded intracortical neural activity, finger positions, and electromyography, we found that decoders trained in one context did not generalize well to other contexts, leading to significant increases in prediction error, especially for muscle activations. However, with respect to online BMI control of the virtual hand, changing either the decoder training task context or the hand’s physical context during online control had little effect on online performance. We explain this dichotomy by showing that the structure of neural population activity remained similar in new contexts, which could allow for fast adjustment online. Additionally, we found that neural activity shifted trajectories proportional to the required muscle activation in new contexts. This shift in neural activity possibly explains biases to off-context kinematic predictions and suggests a feature that could help predict different magnitude muscle activations while producing similar kinematics. 
    more » « less
  3. Abstract Objective. Brain–machine interfaces (BMIs) have shown promise in extracting upper extremity movement intention from the thoughts of nonhuman primates and people with tetraplegia. Attempts to restore a user’s own hand and arm function have employed functional electrical stimulation (FES), but most work has restored discrete grasps. Little is known about how well FES can control continuous finger movements. Here, we use a low-power brain-controlled functional electrical stimulation (BCFES) system to restore continuous volitional control of finger positions to a monkey with a temporarily paralyzed hand. Approach. We delivered a nerve block to the median, radial, and ulnar nerves just proximal to the elbow to simulate finger paralysis, then used a closed-loop BMI to predict finger movements the monkey was attempting to make in two tasks. The BCFES task was one-dimensional in which all fingers moved together, and we used the BMI’s predictions to control FES of the monkey’s finger muscles. The virtual two-finger task was two-dimensional in which the index finger moved simultaneously and independently from the middle, ring, and small fingers, and we used the BMI’s predictions to control movements of virtual fingers, with no FES. Main results. In the BCFES task, the monkey improved his success rate to 83% (1.5 s median acquisition time) when using the BCFES system during temporary paralysis from 8.8% (9.5 s median acquisition time, equal to the trial timeout) when attempting to use his temporarily paralyzed hand. In one monkey performing the virtual two-finger task with no FES, we found BMI performance (task success rate and completion time) could be completely recovered following temporary paralysis by executing recalibrated feedback-intention training one time. Significance. These results suggest that BCFES can restore continuous finger function during temporary paralysis using existing low-power technologies and brain-control may not be the limiting factor in a BCFES neuroprosthesis. 
    more » « less
  4. Working towards improved neuromyoelectric control of dexterous prosthetic hands, we explored how differences in training paradigms affect the subsequent online performance of two different motor-decode algorithms. Participants included two intact subjects and one participant who had undergone a recent transradial amputation after complex regional pain syndrome (CRPS) and multi-year disuse of the affected hand. During algorithm training sessions, participants actively mimicked hand movements appearing on a computer monitor. We varied both the duration of the hold-time (0.1 s or 5 s) at the end-point of each of six different digit and wrist movements, and the order in which the training movements were presented (random or sequential). We quantified the impact of these variations on two different motordecode algorithms, both having proportional, six-degree-offreedom (DOF) control: a modified Kalman filter (MKF) previously reported by this group, and a new approach - a convolutional neural network (CNN). Results showed that increasing the hold-time in the training set improved run-time performance. By contrast, presenting training movements in either random or sequential order had a variable and relatively modest effect on performance. The relative performance of the two decode algorithms varied according to the performance metric. This work represents the first-ever amputee use of a CNN for real-time, proportional six-DOF control of a prosthetic hand. Also novel was the testing of implanted high-channelcount devices for neuromyoelectric control shortly after amputation, following CRPS and long-term hand disuse. This work identifies key factors in the training of decode algorithms that improve their subsequent run-time performance. 
    more » « less
  5. This paper presents an adaptive learning algorithm for predicting movement intent using electromyogram (EMG) signals and controlling a prosthetic arm. The adaptive decoder enables use of the prosthetic systems for long periods of time without the necessity to retrain them. The method of this paper employs a neural network-based decoder and we present a method to update its parameters during the operation phase. Initially, the decoder parameters are estimated during a training phase. During the normal operation, the parameters of the algorithm are updated in a semi-supervised manner based on a movement model. The results presented here, obtained from a single amputee subject, suggest that the approach of this paper improves long-term performance of the decoders over the current state-of-the-art with statistical significance. 
    more » « less