Abstract Tropical gravity waves that are generated by convection are generally too small in scale and too high in frequency to be resolved in global climate models, yet their drag forces drive the important global‐scale quasi‐biennial oscillation (QBO) in the lower stratosphere, and models rely on parameterizations of gravity wave drag to simulate the QBO. We compare detailed properties of tropical parameterized gravity waves in the Whole Atmosphere Community Climate Model version 6 (WACCM6) with gravity waves observed by long‐duration superpressure balloons and also compare properties of parameterized convective latent heating with satellite data. Similarities and differences suggest that the WACCM6 parameterizations are excellent tools for representing tropical gravity waves, but the results also suggest detailed changes to the gravity wave parameterization tuning parameter assumptions that would bring the parameterized waves into much better agreement with observations. While WACCM6 currently includes only nonstationary gravity waves from convection, adding gravity waves generated by the steady component of the heating that are stationary relative to moving convective rain cells is likely to improve the simulation of the QBO in the model. The suggested changes have the potential to alleviate common biases in simulated QBO circulations in models.
more »
« less
Calibration and Uncertainty Quantification of a Gravity Wave Parameterization: A Case Study of the Quasi‐Biennial Oscillation in an Intermediate Complexity Climate Model
Abstract The drag due to breaking atmospheric gravity waves plays a leading order role in driving the middle atmosphere circulation, but as their horizontal wavelength range from tens to thousands of kilometers, part of their spectrum must be parameterized in climate models. Gravity wave parameterizations prescribe a source spectrum of waves in the lower atmosphere and allow these to propagate upwards until they either dissipate or break, where they deposit drag on the large‐scale flow. These parameterizations are a source of uncertainty in climate modeling which is generally not quantified. Here, we explore the uncertainty associated with a non‐orographic gravity wave parameterization given an assumed parameterization structure within a global climate model of intermediate complexity, using the Calibrate, Emulate and Sample (CES) method. We first calibrate the uncertain parameters that define the gravity wave source spectrum in the tropics, to obtain climate model settings that are consistent with properties of the primary mode of tropical stratospheric variability, the Quasi‐Biennial Oscillation (QBO). Then we use a Gaussian process emulator to sample the calibrated distribution of parameters and quantify the uncertainty of these parameter choices. We find that the resulting parametric uncertainties on the QBO period and amplitude are of a similar magnitude to the internal variability under a 2xCO2forcing.
more »
« less
- Award ID(s):
- 2004492
- PAR ID:
- 10379930
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Advances in Modeling Earth Systems
- Volume:
- 14
- Issue:
- 11
- ISSN:
- 1942-2466
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Breaking atmospheric gravity waves (GWs) in the tropical stratosphere are essential in driving the roughly 2‐year oscillation of zonal winds in this region known as the Quasi‐Biennial Oscillation (QBO). As Global Climate Models (GCM)s are not typically able to directly resolve the spectrum of waves required to drive the QBO, parameterizations are necessary. Such parameterizations often require knowledge of poorly constrained physical parameters. In the case of the spectral gravity parameterization used in this work, these parameters are the total equatorial GW stress and the half width of phase speed distribution. Radiosonde observations are used to obtain the period and amplitude of the QBO, which are compared against values obtained from a GCM. We utilize two established calibration techniques to obtain estimates of the range of plausible parameter values: History matching & Ensemble Kalman Inversion (EKI). History matching is found to reduce the size of the initial range of plausible parameters by a factor of 98%, requiring only 60 model integrations. EKI cannot natively provide any uncertainty quantification but is able to produce a single best estimate of the calibrated values in 25 integrations. When directly comparing the approaches using the Calibrate, Emulate, Sample method to produce a posterior estimate from EKI, history matching produces more compact posteriors with fewer model integrations at lower ensemble sizes compared to EKI; however, these differences become less apparent at higher ensemble sizes.more » « less
-
Abstract We present single‐column gravity wave parameterizations (GWPs) that use machine learning to emulate non‐orographic gravity wave (GW) drag and demonstrate their ability to generalize out‐of‐sample. A set of artificial neural networks (ANNs) are trained to emulate the momentum forcing from a conventional GWP in an idealized climate model, given only one view of the annual cycle and one phase of the Quasi‐Biennial Oscillation (QBO). We investigate the sensitivity of offline and online performance to the choice of input variables and complexity of the ANN. When coupled with the model, moderately complex ANNs accurately generate full cycles of the QBO. When the model is forced with enhanced CO2, its climate response with the ANN matches that generated with the physics‐based GWP. That ANNs can accurately emulate an existing scheme and generalize to new regimes given limited data suggests the potential for developing GWPs from observational estimates of GW momentum transport.more » « less
-
Abstract Convective gravity waves are important for the forcing of the quasi biennial oscillation (QBO). There is a wave component that is stationary with respect to the convective cells that is triggered by convection acting like a barrier to the background flow (moving mountain mechanism). Waves from this mechanism have only been observed in a few case studies and are not parameterized in climate models. However, the representation of the whole spectrum of gravity waves is crucial for the simulation of the QBO, especially in the lowermost stratosphere (below 50 hPa) where the QBO amplitudes are under‐estimated in current global circulation models. In this study, we present analysis of convective gravity wave observations from superpressure balloons in boreal winter 2019 and 2021, retrieving phase speeds, momentum fluxes, and drag. We also identify waves generated by the moving mountain mechanism using the theory of the Beres scheme as a basis. These waves do not have a specific period, but are of smaller horizontal scale, on average around 300 km, which is similar to the scale of convective systems. Our results show that gravity waves contribute up to 2/3 to the QBO forcing below 50 hPa and waves from the moving mountain mechanism are responsible for up to 10% of this forcing.more » « less
-
Abstract Atmospheric gravity waves can play a significant role on atmospheric chemistry through temperature fluctuations. A recent modeling study introduced a method to implement subgrid‐scaleorographicgravity‐wave‐induced temperature perturbations in the Whole Atmosphere Community Climate Model (WACCM). The model with a wave‐induced temperature parameterization was able to reproduce for example, the influence of mountain wave events on atmospheric chemistry, as highlighted in previous literature. Here we extend the subgrid‐scale wave‐induced temperature parameterization to also includenon‐orographicgravity waves arising from frontal activity and convection. We explore the impact of these waves on middle atmosphere chemistry, particularly focusing on reactions that are strongly sensitive to temperature. The non‐orographic gravity waves increase the variability of chemical reaction rates, especially in the lower mesosphere. As an example, we show that this, in turn, leads to increases in the daytime ozone variability. To demonstrate another impact, we briefly investigate the role of non‐orographic gravity waves in cirrus cloud formation in this model. Consistent with findings from the previous study focusing on orographic gravity waves, non‐orographic waves also enhance homogeneous nucleation and increase cirrus clouds. The updated method used enables the global chemistry‐climate model to account for both orographic and non‐orographic gravity‐wave‐induced subgrid‐scale dynamical perturbations in a consistent manner.more » « less
An official website of the United States government
