skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bayesian History Matching Applied to the Calibration of a Gravity Wave Parameterization
Abstract Breaking atmospheric gravity waves (GWs) in the tropical stratosphere are essential in driving the roughly 2‐year oscillation of zonal winds in this region known as the Quasi‐Biennial Oscillation (QBO). As Global Climate Models (GCM)s are not typically able to directly resolve the spectrum of waves required to drive the QBO, parameterizations are necessary. Such parameterizations often require knowledge of poorly constrained physical parameters. In the case of the spectral gravity parameterization used in this work, these parameters are the total equatorial GW stress and the half width of phase speed distribution. Radiosonde observations are used to obtain the period and amplitude of the QBO, which are compared against values obtained from a GCM. We utilize two established calibration techniques to obtain estimates of the range of plausible parameter values: History matching & Ensemble Kalman Inversion (EKI). History matching is found to reduce the size of the initial range of plausible parameters by a factor of 98%, requiring only 60 model integrations. EKI cannot natively provide any uncertainty quantification but is able to produce a single best estimate of the calibrated values in 25 integrations. When directly comparing the approaches using the Calibrate, Emulate, Sample method to produce a posterior estimate from EKI, history matching produces more compact posteriors with fewer model integrations at lower ensemble sizes compared to EKI; however, these differences become less apparent at higher ensemble sizes.  more » « less
Award ID(s):
2004492
PAR ID:
10500428
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
16
Issue:
4
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The drag due to breaking atmospheric gravity waves plays a leading order role in driving the middle atmosphere circulation, but as their horizontal wavelength range from tens to thousands of kilometers, part of their spectrum must be parameterized in climate models. Gravity wave parameterizations prescribe a source spectrum of waves in the lower atmosphere and allow these to propagate upwards until they either dissipate or break, where they deposit drag on the large‐scale flow. These parameterizations are a source of uncertainty in climate modeling which is generally not quantified. Here, we explore the uncertainty associated with a non‐orographic gravity wave parameterization given an assumed parameterization structure within a global climate model of intermediate complexity, using the Calibrate, Emulate and Sample (CES) method. We first calibrate the uncertain parameters that define the gravity wave source spectrum in the tropics, to obtain climate model settings that are consistent with properties of the primary mode of tropical stratospheric variability, the Quasi‐Biennial Oscillation (QBO). Then we use a Gaussian process emulator to sample the calibrated distribution of parameters and quantify the uncertainty of these parameter choices. We find that the resulting parametric uncertainties on the QBO period and amplitude are of a similar magnitude to the internal variability under a 2xCO2forcing. 
    more » « less
  2. Abstract Tropical gravity waves that are generated by convection are generally too small in scale and too high in frequency to be resolved in global climate models, yet their drag forces drive the important global‐scale quasi‐biennial oscillation (QBO) in the lower stratosphere, and models rely on parameterizations of gravity wave drag to simulate the QBO. We compare detailed properties of tropical parameterized gravity waves in the Whole Atmosphere Community Climate Model version 6 (WACCM6) with gravity waves observed by long‐duration superpressure balloons and also compare properties of parameterized convective latent heating with satellite data. Similarities and differences suggest that the WACCM6 parameterizations are excellent tools for representing tropical gravity waves, but the results also suggest detailed changes to the gravity wave parameterization tuning parameter assumptions that would bring the parameterized waves into much better agreement with observations. While WACCM6 currently includes only nonstationary gravity waves from convection, adding gravity waves generated by the steady component of the heating that are stationary relative to moving convective rain cells is likely to improve the simulation of the QBO in the model. The suggested changes have the potential to alleviate common biases in simulated QBO circulations in models. 
    more » « less
  3. Abstract An intermediate complexity moist general circulation model is used to investigate the sensitivity of the quasi‐biennial oscillation (QBO) to resolution, diffusion, tropical tropospheric waves, and parameterized gravity waves. Finer horizontal resolution is shown to lead to a shorter period, while finer vertical resolution is shown to lead to a longer period and to a larger amplitude in the lowermost stratosphere. More scale‐selective diffusion leads to a faster and stronger QBO, while enhancing the sources of tropospheric stationary wave activity leads to a weaker QBO. In terms of parameterized gravity waves, broadening the spectral width of the source function leads to a longer period and a stronger amplitude although the amplitude effect saturates in the mid‐stratosphere when the half‐width exceedsm/s. A stronger gravity wave source stress leads to a faster and stronger QBO, and a higher gravity wave launch level leads to a stronger QBO. All of these sensitivities are shown to result from their impact on the resultant wave‐driven momentum torque in the tropical stratosphere. Atmospheric models have struggled to accurately represent the QBO, particularly at moderate resolutions ideal for long climate integrations. In particular, capturing the amplitude and penetration of QBO anomalies into the lower stratosphere (which has been shown to be critical for the tropospheric impacts) has proven a challenge. The results provide a recipe to generate and/or improve the simulation of the QBO in an atmospheric model. 
    more » « less
  4. Abstract There are different strategies for training neural networks (NNs) as subgrid‐scale parameterizations. Here, we use a 1D model of the quasi‐biennial oscillation (QBO) and gravity wave (GW) parameterizations as testbeds. A 12‐layer convolutional NN that predicts GW forcings for given wind profiles, when trained offline in abig‐dataregime (100‐year), produces realistic QBOs once coupled to the 1D model. In contrast, offline training of this NN in asmall‐dataregime (18‐month) yields unrealistic QBOs. However, online re‐training of just two layers of this NN using ensemble Kalman inversion and only time‐averaged QBO statistics leads to parameterizations that yield realistic QBOs. Fourier analysis of these three NNs' kernels suggests why/how re‐training works and reveals that these NNs primarily learn low‐pass, high‐pass, and a combination of band‐pass filters, potentially related to the local and non‐local dynamics in GW propagation and dissipation. These findings/strategies generally apply to data‐driven parameterizations of other climate processes. 
    more » « less
  5. Abstract The quasi‐biennial oscillation (QBO), a ubiquitous feature of the zonal mean zonal winds in the equatorial lower stratosphere, is forced by selective dissipation of atmospheric waves that range in periods from days to hours. However, QBO circulations in numerical models tend to be weak compared with observations, probably because of limited vertical resolution that cannot adequately resolve gravity waves and the height range over which they dissipate. Observations are required to help quantify wave effects. The passage of a superpressure balloon (SPB) near a radiosonde launch site in the equatorial Western Pacific during the transition from the eastward to westward phase of the QBO at 20 km permits a coordinated study of the intrinsic frequencies and vertical structures of two inertia‐gravity wave packets with periods near 1 day and 3 days, respectively. Both waves have large horizontal wavelengths of about 970 and 5,500 km. The complementary nature of the observations provided information on their momentum fluxes and the evolution of the waves in the vertical. The near 1 day westward propagating wave has a critical level near 20 km, while the eastward propagating 3‐day wave is able to propagate through to heights near 30 km before dissipation. Estimates of the forcing provided by the momentum flux convergence, taking into account the duration and scale of the forcing, suggests zonal force of about 0.3–0.4 m s−1 day−1for the 1‐day wave and about 0.4–0.6 m s−1 day−1for the 3‐day wave, which acts for several days. 
    more » « less