skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spontaneous self-propulsion and nonequilibrium shape fluctuations of a droplet enclosing active particles
Abstract Active particles, such as swimming bacteria or self-propelled colloids, spontaneously assemble into large-scale dynamic structures. Geometric boundaries often enforce different spatio-temporal patterns compared to unconfined environment and thus provide a platform to control the behavior of active matter. Here, we report collective dynamics of active particles enclosed by soft, deformable boundary, that is responsive to the particles’ activity. We reveal that a quasi two-dimensional fluid droplet enclosing motile colloids powered by the Quincke effect (Quincke rollers) exhibits strong shape fluctuations with a power spectrum consistent with active fluctuations driven by particle-interface collisions. A broken detailed balance confirms the nonequilibrium nature of the shape dynamics. We further find that rollers self-organize into a single drop-spanning vortex, which can undergo a spontaneous symmetry breaking and vortex splitting. The droplet acquires motility while the vortex doublet exists. Our findings provide insights into the complex collective behavior of active colloidal suspensions in soft confinement.  more » « less
Award ID(s):
2004926
PAR ID:
10379950
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Physics
Volume:
5
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Active colloidal fluids, biological and synthetic, often demonstrate complex self-organization and the emergence of collective behavior. Spontaneous formation of multiple vortices has been recently observed in a variety of active matter systems, however, the generation and tunability of the active vortices not controlled by geometrical confinement remain challenging. Here, we exploit the persistence length of individual particles in ensembles of active rollers to tune the formation of vortices and to orchestrate their characteristic sizes. We use two systems and employ two different approaches exploiting shape anisotropy or polarization memory of individual units for control of the persistence length. We characterize the dynamics of emergent multi-vortex states and reveal a direct link between the behavior of the persistence length and properties of the emergent vortices. We further demonstrate common features between the two systems including anti-ferromagnetic ordering of the neighboring vortices and active turbulent behavior with a characteristic energy cascade in the particles velocity field energy spectra. Our findings provide insights into the onset of spatiotemporal coherence in active roller systems and suggest a control knob for manipulation of dynamic self-assembly in active colloidal ensembles. 
    more » « less
  2. Abstract We study the emergent behaviors of a population of swarming coupled oscillators, dubbed swarmalators. Previous work considered the simplest, idealized case: identical swarmalators with global coupling. Here we expand this work by adding more realistic features: local coupling, non-identical natural frequencies, and chirality. This more realistic model generates a variety of new behaviors including lattices of vortices, beating clusters, and interacting phase waves. Similar behaviors are found across natural and artificial micro-scale collective systems, including social slime mold, spermatozoa vortex arrays, and Quincke rollers. Our results indicate a wide range of future use cases, both to aid characterization and understanding of natural swarms, and to design complex interactions in collective systems from soft and active matter to micro-robotics. 
    more » « less
  3. Abstract Liquid–liquid or liquid–air interfaces provide interesting environments to study colloids and are ubiquitous in nature and industry, as well as relevant in applications involving emulsions and foams. They present a particularly intriguing environment for studying active particles which exhibit a host of phenomena not seen in passive systems. Active particles can also provide on‐demand controllability that greatly expands their use in future applications. However, research on active particles at interfaces is relatively rare compared to those at solid surfaces or in the bulk. Here, magnetically steerable active colloids at liquid–air interfaces that self‐propel by bubble production via the catalytic decomposition of chemical fuel in the liquid medium is presented. The bubble formation and dynamics of “patchy” colloids with a patch of catalytic coating on their surface is investigated and compared to more traditional Janus colloids with a hemispherical coating. The patchy colloids tend to produce smaller bubbles and undergo smoother motion which makes them beneficial for applications such as precise micro‐manipulation. This is demonstrated by manipulating and assembling patterns of passive spheres on a substrate as well as at an air–liquid interface. The propulsion and bubble formation of both the Janus and patchy colloids is characterized and it is found that previously proposed theories are insufficient to fully describe their motion and bubble bursting mechanism. Additionally, the colloids, which reside at the air–liquid interface, demonstrate novel interfacial positive gravitaxis towards the droplet edges which is attributed to a torque resulting from opposing downward and buoyant forces on the colloids. 
    more » « less
  4. The encapsulation of active particles, such as bacteria or active colloids, inside a droplet gives rise to a non-trivial shape dynamics and droplet displacement. To understand this behaviour, we derive an asymptotic solution for the fluid flow about a deformable droplet containing an active particle, modelled as a Stokes-flow singularity, in the case of small shape distortions. We develop a general solution for any Stokes singularity and apply it to compute the flows and resulting droplet velocity due to common singularity representations of active particles, such as Stokeslets, rotlets and stresslets. The results show that offsetting of the active particle from the centre of the drop breaks symmetry and excites a large number of generally non-axisymmetric shape modes as well as particle and droplet motion. In the case of a swimming stresslet singularity, a run-and-tumble locomotion results in superdiffusive droplet displacement. The effect of interfacial properties is also investigated. Surfactants adsorbed at the droplet interface counteract the internal flow and arrest the droplet motion for all Stokes singularities except the Stokeslet. Our results highlight strategies to steer the flows of active particles and create autonomously navigating containers. 
    more » « less
  5. We study the universal behavior of a class of active colloids whose design is inspired by the collective dynamics of natural systems such as schools of fish and flocks of birds. These colloids, with off-center repulsive interaction sites, self-organize into polar swarms exhibiting long-range order and directional motion without significant hydrodynamic interactions. Our simulations show that the system transitions from motile perfect crystals to solid-like, liquid-like, and gas-like states depending on noise levels, repulsive interaction strength, and particle density. By analyzing swarm polarity and hexatic bond order parameters, we demonstrate that effective volume fractions based on force-range and torque-range interactions explain the system's universal behavior. This work lays a groundwork for biomimetic applications utilizing the cooperative polar dynamics of active colloids. 
    more » « less