skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Diverse behaviors in non-uniform chiral and non-chiral swarmalators
Abstract We study the emergent behaviors of a population of swarming coupled oscillators, dubbed swarmalators. Previous work considered the simplest, idealized case: identical swarmalators with global coupling. Here we expand this work by adding more realistic features: local coupling, non-identical natural frequencies, and chirality. This more realistic model generates a variety of new behaviors including lattices of vortices, beating clusters, and interacting phase waves. Similar behaviors are found across natural and artificial micro-scale collective systems, including social slime mold, spermatozoa vortex arrays, and Quincke rollers. Our results indicate a wide range of future use cases, both to aid characterization and understanding of natural swarms, and to design complex interactions in collective systems from soft and active matter to micro-robotics.  more » « less
Award ID(s):
2042411
PAR ID:
10397991
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT There are many instances of collective behaviors in the natural world. For example, eukaryotic cells coordinate their motion to heal wounds; bacteria swarm during colony expansion; defects in alignment in growing bacterial populations lead to biofilm growth; and birds move within dynamic flocks. Although the details of how these groups behave vary across animals and species, they share the same qualitative feature: they exhibit collective behaviors that are not simple extensions of details associated with the motion of an individual. To learn more about these biological systems, we propose studying these systems through the lens of the foundational Vicsek model. Here, we present the process of building this computational model from scratch in a tutorial format that focuses on building the appropriate skills of an undergraduate student. In doing so, an undergraduate student should be able to work alongside this article, the corresponding tutorial, and the original manuscript of the Vicsek model to build their own model. We conclude by summarizing some of the current work involving computational modeling of flocking with Vicsek-type models. 
    more » « less
  2. Abstract This paper deals with the derivation of the mean‐field limit for multi‐agent systems on a large class of sparse graphs. More specifically, the case of non‐exchangeable multi‐agent systems consisting of non‐identical agents is addressed. The analysis does not only involve PDEs and stochastic analysis but also graph theory through a new concept of limits of sparse graphs (extended graphons) that reflect the structure of the connectivities in the network and has critical effects on the collective dynamics. In this article some of the main restrictive hypothesis in the previous literature on the connectivities between the agents (dense graphs) and the cooperation between them (symmetric interactions) are removed. 
    more » « less
  3. Waveguide quantum electrodynamics constitutes a modern paradigm for the interaction of light and matter, in which strong coupling, bath structure, and propagation delays can break the radiative conditions that quantum emitters typically encounter in free space. These characteristics intertwine the excitations of quantum emitters and guided radiation modes to form complex multiphoton dynamics. So far, combining the collective decay of the emitters with the non-Markovian effects induced by the modes has escaped a full solution and the detailed physics behind these systems remains unknown. Here we analyze such a collective non-Markovian decay in a minimal system of two excited emitters coupled to a one-dimensional single-band waveguide. We develop an exact solution for this system in terms of elementary functions that unveils hidden symmetries and predicts new forms of spontaneous decay. The collective non-Markovian dynamics, which are strongly dependent on the vacuum coupling and the detuning from the center of the band, show exotic features that can be characterized with a simple and readily available criterion. Our analytic methods shed light on the complexity of collective light-matter interactions and open up a pathway for understanding multiparticle open quantum systems. Published by the American Physical Society2024 
    more » « less
  4. Abstract Many social insects construct nests, which are fundamentally important to the success and survival of the colony. We review recent work on understanding the construction and function of social insect nests and attempt to identify general principles of collective construction and nest architecture in insect societies. We look across taxa, including termites, ants, social bees, and social wasps, specifically focusing on experimental studies that have elucidated the mechanisms by which insect nests are successfully built. We find that selecting materials and nest sites are crucial decisions made by social insects that impact both the resulting nest architecture and colony survival. Social insects utilize cohesive, malleable material to build nests. Often, nests are constructed in a modular manner, allowing social insects to exploit a variety of materials while growing to accommodate population explosions from a few individuals to millions. We note that the regulatory principles that coordinate building behaviors are consistent across taxa. Specifically, encounter rate, positive and negative feedback cycles, stigmergy, and genetic influence all govern the actions of multiple builders and result in a cohesive, functional structure. We further consider empirical studies that demonstrate how nests impact collective behaviors and help insect societies flourish. We find that all social insect nests serve the same key functions: to protect residents and to offer a means of organizing their collective behaviors. Ultimately, we expand our analysis to experiments utilizing robot models of societies, which aim to uncover unifying themes of construction and space use by collectives. Overall, we show that social insect nests represent engineering and construction marvels that provide fundamental insights into how biological collectives succeed in the natural environment, and we suggest that the use of robotic models may provide insight into these fascinating behaviors and structures. 
    more » « less
  5. Cell-like model chemical systems are powerful tools that can be used to explore the role of intercellular coupling on population level behaviors in communities of biological cells. We present a new method for fabricating such micro-reactors using the photosensitive Belousov–Zhabotinsky (BZ) reaction system employed in silica microparticles. These BZ micro-reactors have a tunable response to photochemical coupling, varying from a fully excitatory response to a fully inhibitory response. Their response can be tuned through variations in either the reactive mixture or, on an individual micro-reactor level, by changes in parameters used during the fabrication of the silica microparticles. A reaction–diffusion model is used to explore the physicochemical properties of the microparticles that lead to their tunable behavior. 
    more » « less