skip to main content

Title: Autonomous scanning probe microscopy investigations over WS2 and Au{111}

Individual atomic defects in 2D materials impact their macroscopic functionality. Correlating the interplay is challenging, however, intelligent hyperspectral scanning tunneling spectroscopy (STS) mapping provides a feasible solution to this technically difficult and time consuming problem. Here, dense spectroscopic volume is collected autonomously via Gaussian process regression, where convolutional neural networks are used in tandem for spectral identification. Acquired data enable defect segmentation, and a workflow is provided for machine-driven decision making during experimentation with capability for user customization. We provide a means towards autonomous experimentation for the benefit of both enhanced reproducibility and user-accessibility. Hyperspectral investigations on WS2sulfur vacancy sites are explored, which is combined with local density of states confirmation on the Au{111} herringbone reconstruction. Chalcogen vacancies, pristine WS2, Au face-centered cubic, and Au hexagonal close-packed regions are examined and detected by machine learning methods to demonstrate the potential of artificial intelligence for hyperspectral STS mapping.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Computational Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Tunable Fano resonances and plasmon–exciton coupling are demonstrated at room temperature in hybrid systems consisting of single plasmonic nanoparticles deposited on top of the transition metal dichalcogenide monolayers. By using single Au nanotriangles (AuNTs) on monolayer WS2as model systems, Fano resonances are observed from the interference between a discrete exciton band of monolayer WS2and a broadband plasmonic mode of single AuNTs. The Fano lineshape depends on the exciton binding energy and the localized surface plasmon resonance strength, which can be tuned by the dielectric constant of surrounding solvents and AuNT size, respectively. Moreover, a transition from weak to strong plasmon–exciton coupling with Rabi splitting energies of 100–340 meV is observed by rationally changing the surrounding solvents. With their tunable plasmon–exciton interactions, the proposed WS2–AuNT hybrids can open new pathways to develop active nanophotonic devices.

    more » « less
  2. Abstract

    Beaver engineering in the Arctic tundra induces hydrologic and geomorphic changes that are favorable to methane (CH4) production. Beaver-mediated methane emissions are driven by inundation of existing vegetation, conversion from lotic to lentic systems, accumulation of organic rich sediments, elevated water tables, anaerobic conditions, and thawing permafrost. Ground-based measurements of CH4emissions from beaver ponds in permafrost landscapes are scarce, but hyperspectral remote sensing data (AVIRIS-NG) permit mapping of ‘hotspots’ thought to represent locations of high CH4emission. We surveyed a 429.5 km2area in Northwestern Alaska using hyperspectral airborne imaging spectroscopy at ∼5 m pixel resolution (14.7 million observations) to examine spatial relationships between CH4hotspots and 118 beaver ponds. AVIRIS-NG CH4hotspots covered 0.539% (2.3 km2) of the study area, and were concentrated within 30 m of waterbodies. Comparing beaver ponds to all non-beaver waterbodies (including waterbodies >450 m from beaver-affected water), we found significantly greater CH4hotspot occurrences around beaver ponds, extending to a distance of 60 m. We found a 51% greater CH4hotspot occurrence ratio around beaver ponds relative to nearby non-beaver waterbodies. Dammed lake outlets showed no significant differences in CH4hotspot ratios compared to non-beaver lakes, likely due to little change in inundation extent. The enhancement in AVIRIS-NG CH4hotspots adjacent to beaver ponds is an example of a new disturbance regime, wrought by an ecosystem engineer, accelerating the effects of climate change in the Arctic. As beavers continue to expand into the Arctic and reshape lowland ecosystems, we expect continued wetland creation, permafrost thaw and alteration of the Arctic carbon cycle, as well as myriad physical and biological changes.

    more » « less
  3. Abstract

    Fullertubes, that is, fullerenes consisting of a carbon nanotube moiety capped by hemifullerene ends, are emerging carbon nanomaterials whose properties show both fullerene and carbon nanotube (CNT) traits. Albeit it may be expected that their electronic states show a certain resemblance to those of the extended nanotube, such a correlation has not yet been found or described. Here it shows a scanning tunneling microscopy (STM) and spectroscopy (STS) characterization of the adsorption, self‐assembly, and electronic structure of 2D arrays of [5,5]‐C90fullertube molecules on two different noble metal surfaces, Ag(111) and Au(111). The results demonstrate that the shape of the molecular orbitals of the adsorbed fullertubes corresponds closely to those expected for isolated species on the grounds of density functional theory calculations. Moreover, a comparison between the electronic density profiles in the bands of the extended [5,5]‐CNT and in the molecules reveals that some of the frontier orbitals of the fullertube molecules can be described as the result of the quantum confinement imposed by the hemifullerene caps to the delocalized band states in the extended CNT. The results thus provide a conceptual framework for the rational design of custom fullertube molecules and can potentially become a cornerstone in the understanding of these new carbon nanoforms.

    more » « less
  4. Abstract

    Gold screen printed electrodes (Au‐SPEs) were treated electrochemically to produce a micro‐rough pattern increasing the real electrode surface. The procedure based on the Dynamic Hydrogen Bubble Template (DHBT) method included electrochemical deposition of Au layers onto the surface of the Au‐SPEs, followed by a reductive process at −3 V (vs. Ag/AgCl) leading to formation of H2bubbles, which produced pores in the Au multilayer. The morphology of the micro‐porous Au electrode was characterized by scanning electron microscopy (SEM), surface mapping, surface profilometry, and confocal microscopy. The electrode surface morphology was controlled by the time of the electrode reductive treatment (H2evolution) and the optimized condition resulting in the best surface structuring was found. Notably, the surface roughness leading to the highest electrode surface area was significantly increased compared to previously reported results with Au‐SPEs.

    more » « less
  5. Abstract

    The field of photovoltaics is revolutionized in recent years by the development of two–dimensional (2D) type‐II heterostructures. These heterostructures are made up of two different materials with different electronic properties, which allows for the capture of a broader spectrum of solar energy than traditional photovoltaic devices. In this study, the potential of vanadium (V)‐doped WS2is investigated, hereafter labeled V‐WS2, in combination with air‐stable Bi2O2Se for use in high‐performance photovoltaic devices. Various techniques are used to confirm the charge transfer of these heterostructures, including photoluminescence (PL) and Raman spectroscopy, along with Kelvin probe force microscopy (KPFM). The results show that the PL is quenched by 40%, 95%, and 97% for WS2/Bi2O2Se, 0.4 at.% V‐WS2/Bi2O2Se, and 2 at.% V‐WS2/Bi2O2Se, respectively, indicating a superior charge transfer in V‐WS2/Bi2O2Se compared to pristine WS2/Bi2O2Se. The exciton binding energies for WS2/Bi2O2Se, 0.4 at.% V‐WS2/Bi2O2Se and 2 at.% V‐WS2/Bi2O2Se heterostructures are estimated to be ≈130, 100, and 80 meV, respectively, which is much lower than that for monolayer WS2. These findings confirm that by incorporating V‐doped WS2, charge transfer in WS2/Bi2O2Se heterostructures can be tuned, providing a novel light‐harvesting technique for the development of the next generation of photovoltaic devices based on V‐doped transition metal dichalcogenides (TMDCs)/Bi2O2Se.

    more » « less