Elucidating details of biology’s selective uptake and trafficking of rare earth elements, particularly the lanthanides, has the potential to inspire sustainable biomolecular separations of these essential metals for myriad modern technologies. Here, we biochemically and structurally characterizeMethylobacterium(Methylorubrum)extorquensLanD, a periplasmic protein from a bacterial gene cluster for lanthanide uptake. This protein provides only four ligands at its surface-exposed lanthanide-binding site, allowing for metal-centered protein dimerization that favors the largest lanthanide, LaIII. However, the monomer prefers NdIIIand SmIII, which are disfavored lanthanides for cellular utilization. Structure-guided mutagenesis of a metal-ligand and an outer-sphere residue weakens metal binding to the LanD monomer and enhances dimerization for PrIIIand NdIIIby 100-fold. Selective dimerization enriches high-value PrIIIand NdIIIrelative to low-value LaIIIand CeIIIin an all-aqueous process, achieving higher separation factors than lanmodulins and comparable or better separation factors than common industrial extractants. Finally, we show that LanD interacts with lanmodulin (LanM), a previously characterized periplasmic protein that shares LanD’s preference for NdIIIand SmIII. Our results suggest that LanD’s unusual metal-binding site transfers less-desirable lanthanides to LanM to siphon them away from the pathway for cytosolic import. The properties of LanD show how relatively weak chelators can achieve high selectivity, and they form the basis for the design of protein dimers for separation of adjacent lanthanide pairs and other metal ions. 
                        more » 
                        « less   
                    
                            
                            Site-selective photocatalytic functionalization of peptides and proteins at selenocysteine
                        
                    
    
            Abstract The importance of modified peptides and proteins for applications in drug discovery, and for illuminating biological processes at the molecular level, is fueling a demand for efficient methods that facilitate the precise modification of these biomolecules. Herein, we describe the development of a photocatalytic method for the rapid and efficient dimerization and site-specific functionalization of peptide and protein diselenides. This methodology, dubbed the photocatalytic diselenide contraction, involves irradiation at 450 nm in the presence of an iridium photocatalyst and a phosphine and results in rapid and clean conversion of diselenides to reductively stable selenoethers. A mechanism for this photocatalytic transformation is proposed, which is supported by photoluminescence spectroscopy and density functional theory calculations. The utility of the photocatalytic diselenide contraction transformation is highlighted through the dimerization of selenopeptides, and by the generation of two families of protein conjugates via the site-selective modification of calmodulin containing the 21stamino acid selenocysteine, and the C-terminal modification of a ubiquitin diselenide. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1955876
- PAR ID:
- 10379964
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Efficient and site‐specific modification of native peptides and proteins is desirable for synthesizing antibody‐drug conjugates as well as for constructing chemically modified peptide libraries using genetically encoded platforms such as phage display. In particular, there is much interest in efficient multicyclization of native peptides due to the appeals of multicyclic peptides as therapeutics. However, conventional approaches for multicyclic peptide synthesis require orthogonal protecting groups or non‐proteinogenic clickable handles. Herein, we report a cysteine‐directed proximity‐driven strategy for the constructing bicyclic peptides from simple natural peptide precursors. This linear to bicycle transformation initiates with rapid cysteine labeling, which then triggers proximity‐driven amine‐selective cyclization. This bicyclization proceeds rapidly under physiologic conditions, yielding bicyclic peptides with a Cys‐Lys‐Cys, Lys‐Cys‐Lys or N‐terminus‐Cys‐Cys stapling pattern. We demonstrate the utility and power of this strategy by constructing bicyclic peptides fused to proteins as well as to the M13 phage, paving the way to phage display of novel bicyclic peptide libraries.more » « less
- 
            Abstract Native metalloenzymes are unparalleled in their ability to perform efficient small molecule activation reactions, converting simple substrates into complex products. Most of these natural systems possess multiple metallocofactors to facilitate electron transfer or cascade catalysis. While the field of artificial metalloenzymes is growing at a rapid rate, examples of artificial enzymes that leverage two distinct cofactors remain scarce. In this work, we describe a new class of artificial enzymes containing two different metallocofactors, incorporated through bioorthogonal strategies. Nickel-substituted rubredoxin (NiRd), which is a structural and functional mimic of [NiFe] hydrogenases, is used as a scaffold. Incorporation of a synthetic bimetallic inorganic complex based on a macrocyclic biquinazoline ligand (MMBQ) was accomplished using a novel chelating thioether linker. Neither the structure of the NiRdactive site nor the MMBQwere altered upon attachment, and each site retained independent redox activity. Electrocatalysis was observed from each site, with the switchability of the system demonstrated through the use of catalytically inert metal centers. This MMBQ–NiRdplatform offers a new avenue to create multicofactor artificial metalloenzymes in a robust system that can be easily tuned both through modifications to the protein scaffold and the synthetic moiety, with applications for redox catalysis and tandem reactivity. Graphical abstractmore » « less
- 
            Abstract Chemical doping is an important approach to manipulating charge-carrier concentration and transport in organic semiconductors (OSCs)1–3and ultimately enhances device performance4–7. However, conventional doping strategies often rely on the use of highly reactive (strong) dopants8–10, which are consumed during the doping process. Achieving efficient doping with weak and/or widely accessible dopants under mild conditions remains a considerable challenge. Here, we report a previously undescribed concept for the photocatalytic doping of OSCs that uses air as a weak oxidant (p-dopant) and operates at room temperature. This is a general approach that can be applied to various OSCs and photocatalysts, yielding electrical conductivities that exceed 3,000 S cm–1. We also demonstrate the successful photocatalytic reduction (n-doping) and simultaneous p-doping and n-doping of OSCs in which the organic salt used to maintain charge neutrality is the only chemical consumed. Our photocatalytic doping method offers great potential for advancing OSC doping and developing next-generation organic electronic devices.more » « less
- 
            Abstract We have developed a novel visible‐light‐catalyzed bioconjugation reaction, PhotoCLIC, that enables chemoselective attachment of diverse aromatic amine reagents onto a site‐specifically installed 5‐hydroxytryptophan residue (5HTP) on full‐length proteins of varied complexity. The reaction uses catalytic amounts of methylene blue and blue/red light‐emitting diodes (455/650 nm) for rapid site‐specific protein bioconjugation. Characterization of the PhotoCLIC product reveals a unique structure formed likely through a singlet oxygen‐dependent modification of 5HTP. PhotoCLIC has a wide substrate scope and its compatibility with strain‐promoted azide‐alkyne click reaction, enables site‐specific dual‐labeling of a target protein.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
