skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How and When Random Feedback Works: A Case Study of Low-Rank Matrix Factorization
The success of gradient descent in ML and especially for learning neural networks is remarkable and robust. In the context of how the brain learns, one aspect of gradient descent that appears biologically difficult to realize (if not implausible) is that its updates rely on feedback from later layers to earlier layers through the same connections. Such bidirected links are relatively few in brain networks, and even when reciprocal connections exist, they may not be equi-weighted. Random Feedback Alignment (Lillicrap et al., 2016), where the backward weights are random and fixed, has been proposed as a bio-plausible alternative and found to be effective empirically. We investigate how and when feedback alignment (FA) works, focusing on one of the most basic problems with layered structure n×m, the goal is to find a low rank factorization Zn×rWr×m that minimizes the error ∥ZW−Y∥F. Gradient descent solves this problem optimally. We show that FA finds the optimal solution when r≥rank(Y). We also shed light on how FA works. It is observed empirically that the forward weight matrices and (random) feedback matrices come closer during FA updates. Our analysis rigorously derives this phenomenon and shows how it facilitates convergence of FA*, a closely related variant of FA. We also show that FA can be far from optimal when r  more » « less
Award ID(s):
1909756 2134105
PAR ID:
10379990
Author(s) / Creator(s):
Date Published:
Journal Name:
AISTATS
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The success of gradient descent in ML and especially for learning neural networks is remarkable and robust. In the context of how the brain learns, one aspect of gradient descent that appears biologically difficult to realize (if not implausible) is that its updates rely on feedback from later layers to earlier layers through the same connections. Such bidirected links are relatively few in brain networks, and even when reciprocal connections exist, they may not be equi-weighted. Random Feedback Alignment (Lillicrap et al., 2016), where the backward weights are random and fixed, has been proposed as a bio-plausible alternative and found to be effective empirically. We investigate how and when feedback alignment (FA) works, focusing on one of the most basic problems with layered structure n×m, the goal is to find a low rank factorization Zn×rWr×m that minimizes the error ∥ZW−Y∥F. Gradient descent solves this problem optimally. We show that FA finds the optimal solution when r≥rank(Y). We also shed light on how FA works. It is observed empirically that the forward weight matrices and (random) feedback matrices come closer during FA updates. Our analysis rigorously derives this phenomenon and shows how it facilitates convergence of FA*, a closely related variant of FA. We also show that FA can be far from optimal when r 
    more » « less
  2. We analyze deep ReLU neural networks trained with mini-batch stochastic gradient decent and weight decay. We prove that the source of the SGD noise is an implicit low rank constraint across all of the weight matrices within the network. Furthermore, we show, both theoretically and empirically, that when training a neural network using Stochastic Gradient Descent (SGD) with a small batch size, the resulting weight matrices are expected to be of small rank. Our analysis relies on a minimal set of assumptions and the neural networks may include convolutional layers, residual connections, as well as batch normalization layers. 
    more » « less
  3. In this paper, we study the bias of Stochastic Gradient Descent (SGD) to learn low-rank weight matrices when training deep ReLU neural networks. Our results show that training neural networks with mini-batch SGD and weight decay causes a bias towards rank minimization over the weight matrices. Specifically, we show, both theoretically and empirically, that this bias is more pronounced when using smaller batch sizes, higher learning rates, or increased weight decay. Additionally, we predict and observe empirically that weight decay is necessary to achieve this bias. Finally, we empirically investigate the connection between this bias and generalization, finding that it has a marginal effect on generalization. Our analysis is based on a minimal set of assumptions and applies to neural networks of any width or depth, including those with residual connections and convolutional layers. 
    more » « less
  4. We consider using gradient descent to minimize the nonconvex function $$f(X)=\phi(XX^{T})$$ over an $$n\times r$$ factor matrix $$X$$, in which $$\phi$$ is an underlying smooth convex cost function defined over $$n\times n$$ matrices. While only a second-order stationary point $$X$$ can be provably found in reasonable time, if $$X$$ is additionally \emph{rank deficient}, then its rank deficiency certifies it as being globally optimal. This way of certifying global optimality necessarily requires the search rank $$r$$ of the current iterate $$X$$ to be \emph{overparameterized} with respect to the rank $$r^{\star}$ of the global minimizer $$X^{\star}$$. Unfortunately, overparameterization significantly slows down the convergence of gradient descent, from a linear rate with $$r=r^{\star}$$ to a sublinear rate when $$r>r^{\star}$$, even when $$\phi$$ is strongly convex. In this paper, we propose an inexpensive preconditioner that restores the convergence rate of gradient descent back to linear in the overparameterized case, while also making it agnostic to possible ill-conditioning in the global minimizer $$X^{\star}$$. 
    more » « less
  5. We propose a new randomized optimization method for high-dimensional problems which can be seen as a generalization of coordinate descent to random subspaces. We show that an adaptive sampling strategy for the random subspace significantly outperforms the oblivious sampling method, which is the common choice in the recent literature. The adaptive subspace can be efficiently generated by a correlated random matrix ensemble whose statistics mimic the input data. We prove that the improvement in the relative error of the solution can be tightly characterized in terms of the spectrum of the data matrix, and provide probabilistic upper-bounds. We then illustrate the consequences of our theory with data matrices of different spectral decay. Extensive experimental results show that the proposed approach offers significant speed ups in machine learning problems including logistic regression, kernel classification with random convolution layers and shallow neural networks with rectified linear units. Our analysis is based on convex analysis and Fenchel duality, and establishes connections to sketching and randomized matrix decompositions. 
    more » « less