skip to main content

Title: Plasmonic sensors based on graphene and graphene hybrid materials

The past decade has witnessed a rapid growth of graphene plasmonics and their applications in different fields. Compared with conventional plasmonic materials, graphene enables highly confined plasmons with much longer lifetimes. Moreover, graphene plasmons work in an extended wavelength range, i.e., mid-infrared and terahertz regime, overlapping with the fingerprints of most organic and biomolecules, and have broadened their applications towards plasmonic biological and chemical sensors. In this review, we discuss intrinsic plasmonic properties of graphene and strategies both for tuning graphene plasmons as well as achieving higher performance by integrating graphene with plasmonic nanostructures. Next, we survey applications of graphene and graphene-hybrid materials in biosensors, chemical sensors, optical sensors, and sensors in other fields. Lastly, we conclude this review by providing a brief outlook and challenges of the field. Through this review, we aim to provide an overall picture of graphene plasmonic sensing and to suggest future trends of development of graphene plasmonics.

more » « less
Award ID(s):
1904216 2035584 2201054 2135734 1720633
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Nano Convergence
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    An acoustic plasmon mode in a graphene-dielectric-metal structure has recently been spotlighted as a superior platform for strong light-matter interaction. It originates from the coupling of graphene plasmon with its mirror image and exhibits the largest field confinement in the limit of a sub-nm-thick dielectric. Although recently detected in the far-field regime, optical near-fields of this mode are yet to be observed and characterized. Here, we demonstrate a direct optical probing of the plasmonic fields reflected by the edges of graphene via near-field scattering microscope, revealing a relatively small propagation loss of the mid-infrared acoustic plasmons in our devices that allows for their real-space mapping at ambient conditions even with unprotected, large-area graphene grown by chemical vapor deposition. We show an acoustic plasmon mode that is twice as confined and has 1.4 times higher figure of merit in terms of the normalized propagation length compared to the graphene surface plasmon under similar conditions. We also investigate the behavior of the acoustic graphene plasmons in a periodic array of gold nanoribbons. Our results highlight the promise of acoustic plasmons for graphene-based optoelectronics and sensing applications.

    more » « less
  2. Abstract

    Two‐dimensional materials such as graphene have become crucial components of most state‐of‐the‐art plasmonic devices. The possibility of not only generating plasmons in the terahertz regime, but also tuning them in real time via chemical doping or electrical gating make them compelling materials for engineers seeking to build accurate sensors. Thus, the faithful modeling of the propagation of linear waves in a layered, periodic structure with such materials at the interfaces is of paramount importance in many branches of the applied sciences. In this paper, we present a novel formulation of the problem featuring surface currents to model the two‐dimensional materials which not only is free of the artificial singularities present in related approaches, but also can be used to deliver a proof of existence, uniqueness, and analytic dependence of solutions. We advocate for a surface integral formulation which is phrased in terms of well‐chosen Impedance–Impedance Operators that are immune to the Dirichlet eigenvalues which plague the Dirichlet–Neumann Operators that appear in classical formulations. With a High‐Order Perturbation of Surfaces approach we are able to give a straightforward demonstration of this new well‐posedness result which only requires the verification that a finite collection of explicitly stated transcendental expressions be nonzero. We further illustrate the utility of this formulation by displaying results of a High‐Order Spectral numerical implementation which is flexible, rapid, and robust.

    more » « less
  3. Performance of photonic devices critically depends upon their efficiency on controlling the flow of light therein. In the recent past, the implementation of plasmonics, two-dimensional (2D) materials and metamaterials for enhanced light-matter interaction (through concepts such as sub-wavelength light confinement and dynamic wavefront shape manipulation) led to diverse applications belonging to spectroscopy, imaging and optical sensing etc. While 2D materials such as graphene, MoS2 etc., are still being explored in optical sensing in last few years, the application of plasmonics and metamaterials is limited owing to the involvement of noble metals having a constant electron density. The capability of competently controlling the electron density of noble metals is very limited. Further, due to absorption characteristics of metals, the plasmonic and metamaterial devices suffer from large optical loss. Hence, the photonic devices (sensors, in particular) require that an efficient dynamic control of light at nanoscale through field (electric or optical) variation using substitute low-loss materials. One such option may be plasmonic metasurfaces. Metasurfaces are arrays of optical antenna-like anisotropic structures (sub-wavelength size), which are designated to control the amplitude and phase of reflected, scattered and transmitted components of incident light radiation. The present review put forth recent development on metamaterial and metastructure-based various sensors. 
    more » « less
  4. Abstract

    Surface plasmons have found a wide range of applications in plasmonic and nanophotonic devices. The combination of plasmonics with three-dimensional photonic crystals has enormous potential for the efficient localization of light in high surface area photoelectrodes. However, the metals traditionally used for plasmonics are difficult to form into three-dimensional periodic structures and have limited optical penetration depth at operational frequencies, which limits their use in nanofabricated photonic crystal devices. The recent decade has seen an expansion of the plasmonic material portfolio into conducting ceramics, driven by their potential for improved stability, and their conformal growth via atomic layer deposition has been established. In this work, we have created three-dimensional photonic crystals with an ultrathin plasmonic titanium nitride coating that preserves photonic activity. Plasmonic titanium nitride enhances optical fields within the photonic electrode while maintaining sufficient light penetration. Additionally, we show that post-growth annealing can tune the plasmonic resonance of titanium nitride to overlap with the photonic resonance, potentially enabling coupled-phenomena applications for these three-dimensional nanophotonic systems. Through characterization of the tuning knobs of bead size, deposition temperature and cycle count, and annealing conditions, we can create an electrically- and plasmonically-active photonic crystal as-desired for a particular application of choice.

    more » « less
  5. Graphene has transformed the fields of plasmonics and photonics, and become an indispensable component for devices operating in the terahertz to mid-infrared range. Here, for instance, graphene surface plasmons can be excited, and their extreme interfacial confinement makes them vastly effective for sensing and detection. The rapid, robust, and accurate numerical simulation of optical devices featuring graphene is of paramount importance and many groups appeal to Black-Box Finite Element solvers. While accurate, these are quite computationally expensive for problems with simplifying geometrical features such as multiple homogeneous layers, which can be recast in terms of interfacial (rather than volumetric) unknowns. In either case, an important modeling consideration is whether to treat the graphene as a material of small (but non-zero) thickness with an effective permittivity, or as a vanishingly thin sheet of current with an effective conductivity. In this contribution we ponder the correct relationship between the effective conductivity and permittivity of graphene, and propose a new relation which is based upon a concrete mathematical calculation that appears to be missing in the literature. We then test our new model both in the case in which the interface deformation is non-trivial, and when there are two layers of graphene with non-flat interfacial deformation.

    more » « less