skip to main content

Title: Hybridized Radial and Edge Coupled 3D Plasmon Modes in Self‐Assembled Graphene Nanocylinders

Current graphene‐based plasmonic devices are restricted to 2D patterns defined on planar substrates; thus, they suffer from spatially limited 2D plasmon fields. Here, 3D graphene forming freestanding nanocylinders realized by a plasma‐triggered self‐assembly process are introduced. The graphene‐based nanocylinders induce hybridized edge (in‐plane) and radial (out‐of‐plane) coupled 3D plasmon modes stemming from their curvature, resulting in a four orders of magnitude stronger field at the openings of the cylinders than in rectangular 2D graphene ribbons. For the characterization of the 3D plasmon modes, synchrotron nanospectroscopy measurements are performed, which provides the evidence of preservation of the hybridized 3D graphene plasmons in the high precision curved nanocylinders. The distinct 3D modes introduced in this paper, provide an insight into geometry‐dependent 3D coupled plasmon modes and their ability to achieve non‐surface‐limited (volumetric) field enhancements.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a proof of concept for a spectrally selective thermal mid-IR source based on nanopatterned graphene (NPG) with a typical mobility of CVD-grown graphene (up to 3000$$\hbox {cm}^2\,\hbox {V}^{-1}\,\hbox {s}^{-1}$$cm2V-1s-1), ensuring scalability to large areas. For that, we solve the electrostatic problem of a conducting hyperboloid with an elliptical wormhole in the presence of anin-planeelectric field. The localized surface plasmons (LSPs) on the NPG sheet, partially hybridized with graphene phonons and surface phonons of the neighboring materials, allow for the control and tuning of the thermal emission spectrum in the wavelength regime from$$\lambda =3$$λ=3to 12$$\upmu$$μm by adjusting the size of and distance between the circular holes in a hexagonal or square lattice structure. Most importantly, the LSPs along with an optical cavity increase the emittance of graphene from about 2.3% for pristine graphene to 80% for NPG, thereby outperforming state-of-the-art pristine graphene light sources operating in the near-infrared by at least a factor of 100. According to our COMSOL calculations, a maximum emission power per area of$$11\times 10^3$$11×103W/$$\hbox {m}^2$$m2at$$T=2000$$T=2000K for a bias voltage of$$V=23$$V=23V is achieved by controlling the temperature of the hot electrons through the Joule heating. By generalizing Planck’s theory to any grey body and deriving the completely general nonlocal fluctuation-dissipation theorem with nonlocal response of surface plasmons in the random phase approximation, we show that the coherence length of the graphene plasmons and the thermally emitted photons can be as large as 13$$\upmu$$μm and 150$$\upmu$$μm, respectively, providing the opportunity to create phased arrays made of nanoantennas represented by the holes in NPG. The spatial phase variation of the coherence allows for beamsteering of the thermal emission in the range between$$12^\circ$$12and$$80^\circ$$80by tuning the Fermi energy between$$E_F=1.0$$EF=1.0eV and$$E_F=0.25$$EF=0.25eV through the gate voltage. Our analysis of the nonlocal hydrodynamic response leads to the conjecture that the diffusion length and viscosity in graphene are frequency-dependent. Using finite-difference time domain calculations, coupled mode theory, and RPA, we develop the model of a mid-IR light source based on NPG, which will pave the way to graphene-based optical mid-IR communication, mid-IR color displays, mid-IR spectroscopy, and virus detection.

    more » « less
  2. β -Gallium oxide (Ga2O3) is an extensively investigated ultrawide-bandgap semiconductor for potential applications in power electronics and radio frequency switching. The room temperature bulk electron mobility (∼200cm2V−1s−1) is comparatively low and is limited by the 30 phonon modes originating from its 10-atom primitive cell. The theoretically calculated saturation velocity in bulk is 1–2×107cms−1 (comparable to GaN) and is limited by the low field mobility. This work explores the high field electron transport (and hence the velocity saturation) in the 2DEG based on the first principles calculated parameters. A self-consistent calculation on a given heterostructure design gives the confined eigenfunctions and eigenenergies. The intrasubband and the intersubband scattering rates are calculated based on the Fermi’s golden rule considering longitudinal optical (LO) phonon–plasmon screening. The high field characteristics are extracted from the full-band Monte Carlo simulation of heterostructures at 300 K. The overall system is divided into a 2D and a 3D region mimicking the electrons in the 2DEG and the bulk, respectively. The electron transport is treated through an integrated Monte Carlo program which outputs the steady state zone population, transient dynamics, and the velocity–field curves for a few heterostructure designs. The critical field for saturation does not change significantly from bulk values, however, an improved peak velocity is calculated at a higher 2DEG density. The velocity at low 2DEG densities is impacted by the antiscreening of LO phonons which plays an important role in shaping the zone population. A comparison with the experimental measurements is also carried out and possible origins of the discrepancies with experiments is discussed.

    more » « less
  3. Abstract

    Coupling between spin waves (SWs) and other waves in nanostructured media has emerged as an important topic of research because of the rich physics and the potential for disruptive technologies. Herein, a new phenomenon is reported in this family involving coupling between SWs and hybridized phonon‐plasmon waves in a 2D periodic array of magnetostrictive nanomagnets deposited on a silicon substrate with an intervening thin film of aluminium that acts as a source of surface plasmons. Hybridized phonon‐plasmon waves naturally form in this composite material when exposed to ultrashort laser pulses and they non‐linearly couple with SWs to produce a new breed of waves – acousto‐plasmo‐spin waves that can exhibit a “frequency comb” spanning more than one octave. This phenomenon, that we call acousto‐plasmo‐magnonics resulting from tripartite coupling of magnons, phonons and plasmons, is studied with time‐resolved magneto‐optical‐Kerr‐effect microscopy. The findings also reveal the presence of parametric amplification in this system; energy is transferred from the hybridized phonon‐plasmon modes to the acousto‐plasmo‐spin wave modes to amplify the latter. This opens a path to design novel active metamaterials with tailored and enhanced response. It may enable high‐efficiency magneto‐mechanical‐plasmonic frequency mixing in the GHz−THz frequency regime and provide a unique avenue to study non‐linear coupling, parametric amplification, and frequency comb physics.

    more » « less
  4. Abstract

    Van der Waals interactions in 2D materials have enabled the realization of nanoelectronics with high‐density vertical integration. Yet, poor energy transport through such 2D–2D and 2D–3D interfaces can limit a device's performance due to overheating. One long‐standing question in the field is how different encapsulating layers (e.g., contact metals or gate oxides) contribute to the thermal transport at the interface of 2D materials with their 3D substrates. Here, a novel self‐heating/self‐sensing electrical thermometry platform is developed based on atomically thin, metallic Ti3C2MXene sheets, which enables experimental investigation of the thermal transport at a Ti3C2/SiO2interface, with and without an aluminum oxide (AlOx) encapsulating layer. It is found that at room temperature, the thermal boundary conductance (TBC) increases from 10.8 to 19.5 MW m−2K−1upon AlOxencapsulation. Boltzmann transport modeling reveals that the TBC can be understood as a series combination of an external resistance between the MXene and the substrate, due to the coupling of low‐frequency flexural acoustic (ZA) phonons to substrate modes, and an internal resistance between ZA and in‐plane phonon modes. It is revealed that internal resistance is a bottle‐neck to heat removal and that encapsulation speeds up the heat transfer into low‐frequency ZA modes and reduces their depopulation, thus increasing the effective TBC.

    more » « less
  5. Abstract

    Kirigami, the ancient paper art of cutting, has recently emerged as a new approach to construct metamaterials with novel properties imparted by cuts. However, most studies are limited to thin sheets‐based 2D kirigami metamaterials with specific forms and limited reconfigurability due to planar connection constraints of cut units. Here, 3D modular kirigami is introduced by cutting bulk materials into spatially closed‐loop connected cut cubes to construct a new class of 3D kirigami metamaterials. The module is transformable with multiple degrees of freedom that can transform into versatile distinct daughter building blocks. Their conformable assembly creates a wealth of reconfigurable and disassemblable metamaterials with diverse structures and unique properties, including reconfigurable 1D column‐like materials, 2D lattice‐like metamaterials with phase transition of chirality, as well as 3D frustration‐free multilayered metamaterials with 3D auxetic behaviors and programmable deformation modes. This study largely expands the design space of kirigami metamaterials from 2D to 3D.

    more » « less