Greenhouse vegetable production plays a vital role in providing year‐round fresh vegetables to global markets, achieving higher yields, and using less water than open‐field systems, but at the expense of increased energy demand. This study examines the life cycle environmental and economic impacts of integrating semitransparent organic photovoltaics (OPVs) into greenhouse designs. We employ life cycle assessment to analyze six environmental impacts associated with producing greenhouse‐grown tomatoes in a Solar PoweRed INtegrated Greenhouse (SPRING) compared to conventional greenhouses with and without an adjacent solar photovoltaic array, across three distinct locations. The SPRING design produces significant reductions in environmental impacts, particularly in regions with high solar insolation and electricity‐intensive energy demands. For example, in Arizona, global warming potential values for a conventional, adjacent PV and SPRING greenhouse are found to be 3.71, 2.38, and 2.36 kg CO2eq/kg tomato, respectively. Compared to a conventional greenhouse, the SPRING design may increase life cycle environmental burdens in colder regions because the shading effect of OPV increases heating demands. Our analysis shows that SPRING designs must maintain crop yields at levels similar to conventional greenhouses in order to be economically competitive. Assuming consistent crop yields, uncertainty analysis shows average net present cost of production acrossmore »
- Award ID(s):
- 1639429
- Publication Date:
- NSF-PAR ID:
- 10380060
- Journal Name:
- Energy & Environmental Science
- Volume:
- 15
- Issue:
- 4
- Page Range or eLocation-ID:
- 1659 to 1671
- ISSN:
- 1754-5692
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Recognizing the growing interest in the application of organic photovoltaics (OPVs) with greenhouse crop production systems, in this study we used flexible, roll-to-roll printed, semitransparent OPV arrays as a roof shade for a greenhouse hydroponic tomato production system during a spring and summer production season in the arid southwestern U.S. The wavelength-selective OPV arrays were installed in a contiguous area on a section of the greenhouse roof, decreasing the transmittance of all solar radiation wavelengths and photosynthetically active radiation (PAR) wavelengths (400–700 nm) to the OPV-shaded area by approximately 40% and 37%, respectively. Microclimate conditions and tomato crop growth and yield parameters were measured in both the OPV-shaded (‘OPV’) and non-OPV-shaded (‘Control’) sections of the greenhouse. The OPV shade stabilized the canopy temperature during midday periods with the highest solar radiation intensities, performing the function of a conventional shading method. Although delayed fruit development and ripening in the OPV section resulted in lower total yields compared to the Control section (24.6 kg m−2 and 27.7 kg m−2, respectively), after the fourth (of 10 total) harvests, the average weekly yield, fruit number, and fruit mass were not significantly different between the treatment (OPV-shaded) and control group. Light use efficiency (LUE), definedmore »
-
Abstract Greenhouses provide a controlled environment for plant growth, which increases crop yields, reduces the use of water and fertilizers, and offers resilience to droughts and extreme weather. However, greenhouse operation is energy intensive due to their heating and cooling loads. Luminescent solar concentrators (LSCs) are promising for semitransparent greenhouse roofs that produce clean electricity, thus reducing the greenhouse energy demand, while also transmitting enough light to satisfy plant growth. Herein, we model the performance of LSC roofs designed as glass panels coated with quantum dot (QD)/polymer nanocomposite films and front‐facing surface‐mounted photovolatic cells. Five widely studied QD materials are examined to demonstrate that the proposed QD LSC roofs can have effective power conversion efficiencies exceeding 10% while also increasing the red‐light fraction, which is beneficial for plant growth. The effect of LSC integration on the greenhouse thermal energy demands is studied for the example of silicon (Si) QD LSC roofs. In warm climates, solar power generated by the Si QD LSC roofs satisfies the entire greenhouse energy demand and thus enables net‐zero energy operation. Overall, the results of the current research demonstrate the strong potential of integrating QD LSCs into greenhouses to reduce energy costs and enhance plant growth.
-
Lighting is a major component of energy consumption in controlled environment agriculture (CEA) operations. Skyscraper farms (multilevel production in buildings with transparent glazing) have been proposed as alternatives to greenhouse or plant factories (opaque warehouses) to increase space-use efficiency while accessing some natural light. However, there are no previous models on natural light availability and distribution in skyscraper farms. This study employed climate-based daylight modeling software and the Typical Meteorological Year (TMY) dataset to investigate the effects of building geometry and context shading on the availability and spatial distribution of natural light in skyscraper farms in Los Angeles (LA) and New York City (NYC). Electric energy consumption for supplemental lighting in 20-storey skyscraper farms to reach a daily light integral target was calculated using simulation results. Natural lighting in our baseline skyscraper farms without surrounding buildings provides 13% and 15% of the light required to meet a target of 17 mol·m−2·day−1. More elongated buildings may meet up to 27% of the lighting requirements with natural light. However, shading from surrounding buildings can reduce available natural light considerably; in the worst case, natural light only supplies 5% of the lighting requirements. Overall, skyscraper farms require between 4 to 11 times moremore »
-
Semrau, Jeremy D. (Ed.)ABSTRACT Food crops are grown with fertilizers containing nitrogen, phosphorus, and potassium (macronutrients) along with magnesium, calcium, boron, and zinc (micronutrients) at different ratios during their cultivation. Soil and plant-associated microbes have been implicated to promote plant growth, stress tolerance, and productivity. However, the high degree of variability across agricultural environments makes it difficult to assess the possible influences of nutrient fertilizers on these microbial communities. Uncovering the underlying mechanisms could lead us to achieve consistently improved food quality and productivity with minimal environmental impacts. For this purpose, we tested a commercially available fertilizer (surface-mined volcanic ash deposit Azomite) applied as a supplement to the normal fertilizer program of greenhouse-grown tomato plants. Because this treatment showed a significant increase in fruit production at measured intervals, we examined its impact on the composition of below-ground microbial communities, focusing on members identified as “core taxa” that were enriched in the rhizosphere and root endosphere compared to bulk soil and appeared above their predicted neutral distribution levels in control and treated samples. This analysis revealed that Azomite had little effect on microbial composition overall, but it had a significant, temporally selective influence on the core taxa. Changes in the composition of the coremore »