skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterizing the most effective scaffolding approaches in engineering and technology education: A clustering approach
Abstract This study indicates the most effective combinations of scaffolding features within computer science and technology education settings. It addresses the research question, “What combinations of scaffolding characteristics, contexts of use, and assessment levels lead to medium and large effect sizes among college‐ and graduate‐level engineering and technology learners?” To do so, studies in which scaffolding led to a medium or large effect size within the context of technology and engineering education were identified within a scaffolding meta‐analysis data set. Next, two‐step cluster analysis in SPSS 24 was used to identify distinct groups of scaffolding attributes tailored to learning computer science at the undergraduate and graduate levels. Input variables included different scaffolding characteristics, the context of use, education level, and effect size. There was an eight‐cluster solution: five clusters were associated with large effect size, two with medium effect size, and one with both medium and large effect size. The three most important predictors were the context in which scaffolding was used, if and how scaffolding is customized over time and the decision rules that govern scaffolding change. Notably, highly effective scaffolding clusters are associated with most levels of each predictor.  more » « less
Award ID(s):
1906059 1251782 1927595
PAR ID:
10380076
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Computer Applications in Engineering Education
Volume:
30
Issue:
6
ISSN:
1061-3773
Format(s):
Medium: X Size: p. 1795-1812
Size(s):
p. 1795-1812
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper explores customized scaffolding for pre-service teachers’ problem-solving in technology and engineering discipline. We used clustering analysis to discover natural groupings of scaffolding characteristics which were used in 144 computer-based scaffolding studies from the previous meta-analysis. We first selected input variables based on our research questions which include different scaffolding characteristics, context of use, education level, and effect size. Next, using a two-step clustering algorithm, we found four clusters based on the predominant scaffolding characteristics and profiled each cluster in terms of scaffolding characteristics and their context of use. The resulting cluster solutions indicate what combination of scaffolding characteristics used in different types of problem-centered learning context would be effective for pre-service teachers’ technology- and engineering-related problem-solving. 
    more » « less
  2. null (Ed.)
    This study investigates career intentions and students’ engineering attitudes in BME, with a focus on gender differences. Data from n = 716 undergraduate biomedical engineering students at a large public research institution in the United States were analyzed using hierarchical agglomerative cluster analysis. Results revealed five clusters of intended post-graduation plans: Engineering Job and Graduate School, Any Job, Non-Engineering Job and Graduate School, Any Option, and Any Graduate School. Women were evenly distributed across clusters; there was no evidence of gendered career preferences. The main findings in regard to engineering attitudes reveal significant differences by cluster in interest, attainment value, utility value, and professional identity, but not in academic self-efficacy. Yet, within clusters the only gender differences were women’s lower engineering academic self-efficacy, interest and professional identity compared to men. Implications and areas of future research are discussed. 
    more » « less
  3. Historically Black Colleges and Universities (HBCUs) operate and are centered within the nexus of concerted nationwide efforts to advance the participation and success of Black students within the sciences, technology, engineering, and mathematics disciplines (STEM). Through an institution-levelasset-based approach, this study aimed to further elucidate how undergraduate STEM preparation and success at HBCUs is linked to the transition into (and experiences within) graduate education. One hundred and fifty-one HBCU alumni from 37 unique HBCUs completed our HBCU Alumni Success survey. Factor analysis revealed 13 emerging components along three main touchpoints along alumni's graduate pathway: their HBCU undergraduate experiences, graduate application, and decision-making, as well as graduate school experiences. Cluster analysis further identified five unique clusters of alumni, revealing variation regarding the individual, institutional, and cultural factors that contributed to HBCU alumni's experiences within their graduate pathway. Specific attributes that characterized each unique cluster included (Cluster 1) experiencing challenges throughout theirgraduate pathway, (Cluster 2) variation in the sources of motivation that influenced graduate school choice, (Cluster 3) deliberation around attending graduate school, (Cluster 4) high commitment, success, and support in pursuit of a graduate degree, and (Cluster 5) high personal agency as well as faculty and research support within engineering. Implications for practice include capitalizing on the areas of success such as the impact of faculty mentorship and research opportunities. 
    more » « less
  4. Science, Technology, Engineering, and Mathematics (STEM) graduate education traditionally has focused on developing technical and research skills needed to be successful in academic and research settings. In the past decade, however, STEM graduate students increasingly have sought positions in the industry [1]; a recent study by Sherman et al. [2] found that non-academic industry jobs were the most preferred career choice for STEM doctoral students. Despite this preference, graduate education has yet to adapt to better prepare students for their industry positions; a significant portion of students need critical professional skills, such as project management (PM), needed to be effective leaders in these non-academic environments [3-9]. Although a required skill in the industry, these professional skills also can significantly enhance future careers within research and the academy. 
    more » « less
  5. The Department of Electrical and Computer Engineering at a large Midwestern University is seeking to enhance undergraduate engineering education through a combination of programmatic efforts to create departmental change. Three distinct programs aim to transform ECE education through collaborative course design, enhancements to the department climate, and increases in the opportunities for underrepresented undergraduate engineering students. Due to the integrative and corresponding programmatic goals, it was vital to develop a unified evaluation in line with the program evaluation standards (Yarbrough, Shulha, Hopson, & Caruthers, 2011). Further, the interaction of multiple programs necessitated evaluating goal attainment at both the programmatic and departmental levels to determine not only the effects of individual programs but also to examine the broader effect of the interaction of multiple ongoing programmatic efforts to enhance engineering education. To facilitate this process, program team members developed comprehensive lists of ongoing activities designed to create change in the department within each program. Evaluators worked with the program teams to theme and cluster activities into similar groups. To understand how each cluster of activities was positioned to create departmental change and revolutionize engineering education, the evaluators and team members then attempted to identify how each cluster of activities worked as change strategies within the model by Henderson, Beach, and Finkelstein (2011). Thus, evaluators were able to identify over twenty distinct clusters of change activities working as change strategies within the four pillars of the change model: Curriculum and pedagogy, reflective teachers, policy, and shared vision. Positioning activities within this model allowed the evaluators and team members to 1) Better understand the broad scope of departmental activities and change strategies, 2) Identify strengths and challenges associated with their current efforts to transform engineering education within the department, and 3) Develop and integrate ongoing evaluation efforts to further understand both the programmatic and interactive effects of having multiple programs designed at facilitating departmental change and enhancing engineering education. The model for understanding department change and the approaches within that model that are being used to transform ECE education will be presented. We will further explain how the change model approach facilitated evaluating each program and the interactive effects of the combined programmatic efforts within the program evaluation standards of utility, feasibility, propriety, and accuracy (Yarbrough et al., 2011). Specific programmatic and interactive evaluation approaches will be discussed. References Henderson, C., Beach, A., & Finkelstein, N. (2011). Facilitating change in undergraduate STEM instructional practices: An analytic review of the literature. Journal of Research in Science Teaching, 48(8), 952-984. Yarbrough, D. B., Shulha, L. M., Hopson, R. K., & Caruthers, F. A. (2011). The program evaluation standards: A guide for evaluators and evaluation users (3rd ed.). Thousand Oaks, CA: Sage. 
    more » « less