skip to main content


Title: Bacteria-inspired magnetically actuated rod-like soft robot in viscous fluids
Abstract This paper seeks to design, develop, and explore the locomotive dynamics and morphological adaptability of a bacteria-inspired rod-like soft robot propelled in highly viscous Newtonian fluids. The soft robots were fabricated as tapered, hollow rod-like soft scaffolds by applying a robust and economic molding technique to a polyacrylamide-based hydrogel polymer. Cylindrical micro-magnets were embedded in both ends of the soft scaffolds, which allowed bending (deformation) and actuation under a uniform rotating magnetic field. We demonstrated that the tapered rod-like soft robot in viscous Newtonian fluids could perform two types of propulsion; boundary rolling was displayed when the soft robot was located near a boundary, and swimming was displayed far away from the boundary. In addition, we performed numerical simulations to understand the swimming propulsion along the rotating axis and the way in which this propulsion is affected by the soft robot’s design, rotation frequency, and fluid viscosity. Our results suggest that a simple geometrical asymmetry enables the rod-like soft robot to perform propulsion in the low Reynolds number ( Re ≪ 1) regime; these promising results provide essential insights into the improvements that must be made to integrate the soft robots into minimally invasive in vivo applications.  more » « less
Award ID(s):
1760642
NSF-PAR ID:
10380195
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Bioinspiration & Biomimetics
Volume:
17
Issue:
6
ISSN:
1748-3182
Page Range / eLocation ID:
065001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Microscale propulsion impacts a diverse array of fields ranging from biology and ecology to health applications, such as infection, fertility, drug delivery, and microsurgery. However, propulsion in such viscous drag-dominated fluid environments is highly constrained, with time-reversal and geometric symmetries ruling out entire classes of propulsion. Here, we report the spontaneous symmetry-breaking propulsion of rotating spherical microparticles within non-Newtonian fluids. While symmetry analysis suggests that propulsion is not possible along the fore-aft directions, we demonstrate the existence of two equal and opposite propulsion states along the sphere’s rotation axis. We propose and experimentally corroborate a propulsion mechanism for these spherical microparticles, the simplest microswimmers to date, arising from nonlinear viscoelastic effects in rotating flows similar to the rod-climbing effect. Similar possibilities of spontaneous symmetry-breaking could be used to circumvent other restrictions on propulsion, revising notions of microrobotic design and control, drug delivery, microscale pumping, and locomotion of microorganisms. 
    more » « less
  2. The development of novel drug delivery systems, which are revolutionizing modern medicine, is benefiting from studies on microorganisms’ swimming. In this paper we consider a model microorganism (a squirmer) enclosed in a viscous droplet to investigate the effects of medium heterogeneity or geometry on the propulsion speed of the caged squirmer. We first consider the squirmer and droplet to be spherical (no shape effects) and derive exact solutions for the equations governing the problem. For a squirmer with purely tangential surface velocity, the squirmer is always able to move inside the droplet (even when the latter ceases to move as a result of large fluid resistance of the heterogeneous medium). Adding radial modes to the surface velocity, we establish a new condition for the existence of a co-swimming speed (where squirmer and droplet move at the same speed). Next, to probe the effects of geometry on propulsion, we consider the squirmer and droplet to be in Newtonian fluids. For a squirmer with purely tangential surface velocity, numerical simulations reveal a strong dependence of the squirmer's speed on shapes, the size of the droplet and the viscosity contrast. We found that the squirmer speed is largest when the droplet size and squirmer's eccentricity are small, and the viscosity contrast is large. For co-swimming, our results reveal a complex, non-trivial interplay between the various factors that combine to yield the squirmer's propulsion speed. Taken together, our study provides several considerations for the efficient design of future drug delivery systems. 
    more » « less
  3. Abstract

    Metachronal motion is a unique swimming strategy widely adopted by many small animals on the scale of microns up to several centimeters (e.g., ctenophores, copepods, krill, and shrimp). During propulsion, each evenly spaced appendage performs a propulsive stroke sequentially with a constant phaselag from its neighbor, forming a metachronal wave. To produce net thrust in the low-to-intermediate Reynolds number regime, where viscous forces are dominant, the beat cycle of a metachronal appendage must present significant spatial asymmetry between the power and recovery stroke. As the Reynolds number increases, the beat cycle is observed to change from high spatial asymmetry to lower spatial asymmetry. However, it is still unclear how the magnitude of spatial asymmetry can modify the shear layers near the tip of appendages and thus affect its associated hydrodynamic performance. In this study, ctenophores are used to investigate the hydrodynamics of multiple appendages performing a metachronal wave. Ctenophores swim using paddle-like ciliary structures (i.e., ctenes), which beat metachronally in rows circumscribing an ovoid body. Based on high-speed video recordings, we reconstruct the metachronal wave of ctenes for both a lower spatial asymmetry case and a higher spatial asymmetry case. An in-house immersed-boundary-method-based computational fluid dynamics solver is used to simulate the flow field and associated hydrodynamic performance. Our simulation results aim to provide fundamental fluid dynamic principles for guiding the design of bio-inspired miniaturized flexible robots swimming in the low-to-intermediate Reynolds number regime.

     
    more » « less
  4. null (Ed.)
    Microorganisms may exhibit rich swimming behaviours in anisotropic fluids, such as liquid crystals, which have direction-dependent physical and rheological properties. Here we construct a two-dimensional computation model to study the undulatory swimming mechanisms of microswimmers in a solution of rigid, rodlike liquid crystal polymers. We describe the fluid phase using Doi's $Q$ -tensor model, and treat the swimmer as a finite-length flexible fibre with imposed propagating travelling waves on the body curvature. The fluid–structure interactions are resolved via an immersed boundary method. Compared with the swimming dynamics in Newtonian fluids, we observe non-Newtonian behaviours that feature both enhanced and retarded swimming motions in lyotropic liquid crystal polymers. We reveal the propulsion mechanism by analysing the near-body flow fields and polymeric force distributions, together with asymptotic analysis for an idealized model of Taylor's swimming sheet. 
    more » « less
  5. Locomotion is typically studied either in continuous media where bodies and legs experience forces generated by the flowing medium or on solid substrates dominated by friction. In the former, centralized whole-body coordination is believed to facilitate appropriate slipping through the medium for propulsion. In the latter, slip is often assumed minimal and thus avoided via decentralized control schemes. We find in laboratory experiments that terrestrial locomotion of a meter-scale multisegmented/legged robophysical model resembles undulatory fluid swimming. Experiments varying waves of leg stepping and body bending reveal how these parameters result in effective terrestrial locomotion despite seemingly ineffective isotropic frictional contacts. Dissipation dominates over inertial effects in this macroscopic-scaled regime, resulting in essentially geometric locomotion on land akin to microscopic-scale swimming in fluids. Theoretical analysis demonstrates that the high-dimensional multisegmented/legged dynamics can be simplified to a centralized low-dimensional model, which reveals an effective resistive force theory with an acquired viscous drag anisotropy. We extend our low-dimensional, geometric analysis to illustrate how body undulation can aid performance in non–flat obstacle-rich terrains and also use the scheme to quantitatively model how body undulation affects performance of biological centipede locomotion (the desert centipede Scolopendra polymorpha ) moving at relatively high speeds (∼0.5 body lengths/sec). Our results could facilitate control of multilegged robots in complex terradynamic scenarios. 
    more » « less