We report the effects of polymer size, concentration, and polymer fluid viscoelasticity on the propulsion kinematics of achiral microswimmers. Magnetically driven swimmer's step‐out frequency, orientation angle, and propulsion efficiency are shown to be dependent on fluid microstructure, viscosity, and viscoelasticity. Additionally, by exploring the swimming dynamics of two geometrically distinct achiral structures, we observe differences in propulsion efficiencies of swimmers. Results indicate that larger four‐bead swimmers are more efficiently propelled in fluids with significant elasticity in contrast to smaller 3‐bead swimmers, which are able to use shear thinning behavior for efficient propulsion. Insights gained from these investigations will assist the development of future microswimmer designs and control strategies targeting applications in complex fluids.
Here, we use magnetically driven self-assembled achiral swimmers made of two to four superparamagnetic micro-particles to provide insight into how swimming kinematics develop in complex, shear-thinning fluids. Two model shear-thinning polymer fluids are explored, where measurements of swimming dynamics reveal contrasting propulsion kinematics in shear-thinning fluids vs a Newtonian fluid. When comparing the velocity of achiral swimmers in polymer fluids to their dynamics in water, we observe kinematics dependent on (1) no shear-thinning, (2) shear-thinning with negligible elasticity, and (3) shear-thinning with elasticity. At the step-out frequency, the fluidic environment's viscoelastic properties allow swimmers to propel faster than their Newtonian swimming speed, although their swimming gait remains similar. Micro-particle image velocimetry is also implemented to provide insight into how shear-thinning viscosity fluids with elasticity can modify the flow fields of the self-assembled magnetic swimmers. Our findings reveal that flow asymmetry can be created for symmetric swimmers through either the confinement effect or the Weissenberg effect. For pseudo-chiral swimmers in shear-thinning fluids, only three bead swimmers show swimming enhancement, while four bead swimmers always have a decreased step-out frequency velocity compared to their dynamics in water.
more » « less- PAR ID:
- 10501630
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- Physics of Fluids
- Volume:
- 35
- Issue:
- 9
- ISSN:
- 1070-6631
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
null (Ed.)Some micro-organisms and artificial micro-swimmers propel at low Reynolds numbers (Re) via the interaction of their flexible appendages with the surrounding fluid. While their locomotion has been extensively studied with a Newtonian fluid assumption, in realistic biological environments these micro-swimmers invariably encounter rheologically complex fluids. In particular, many biological fluids such as blood and different types of mucus have shear-thinning viscosities. The influence of this ubiquitous non-Newtonian rheology on the performance of flexible swimmers remains largely unknown. Here, we present a first study to examine how shear-thinning rheology alters the fluid-structure interaction and hence the propulsion performance of elastic swimmers at low Re. Via a simple elastic swimmer actuated magnetically, we demonstrate that shear-thinning rheology can either enhance or hinder elastohydrodynamic propulsion, depending on the intricate interplay between elastic and viscous forces as well as the magnetic actuation. We also use a reduced-order model to elucidate the mechanisms underlying the enhanced and hindered propulsion observed in different physical regimes. These results and improved understanding could guide the design of flexible micro-swimmers in non-Newtonian fluids.more » « less
-
We conduct experiments with flexible swimmers to address the impact of fluid viscoelasticity on their locomotion. The swimmers are composed of a magnetic head actuated in rotation by a frequency-controlled magnetic field and a flexible tail whose deformation leads to forward propulsion. We consider both viscous Newtonian and glucose-based Boger fluids with similar viscosities. We find that the elasticity of the fluid systematically enhances the locomotion speed of the swimmer and that this enhancement increases with Deborah number. Using particle image velocimetry to visualize the flow field, we find a significant difference in the amount of shear between the rear and leading parts of the swimmer head. We conjecture that viscoelastic normal stresses lead to a net elastic forces in the swimming direction and thus a faster swimming speed.
-
Biological and artificial microswimmers often encounter fluid media with non-Newtonian rheological properties. In particular, many biological fluids such as blood and mucus are shear-thinning. Recent studies have demonstrated how shear-thinning rheology can impact substantially the propulsion performance in different manners. In this work, we examine the effect of geometrical shape upon locomotion in a shear-thinning fluid using a prolate spheroidal squirmer model. We use a combination of asymptotic analysis and numerical simulations to quantify how particle geometry impacts the speed and the energetic cost of swimming. The results demonstrate the advantages of spheroidal over spherical swimmers in terms of both swimming speed and energetic efficiency when squirming through a shear-thinning fluid. More generally, the findings suggest the possibility of tuning the swimmer geometry to better exploit non-Newtonian rheological behaviours for more effective locomotion in complex fluids.more » « less
-
The formation and development of micro-voids within the bead microstructure of a polymer composite during the extrusion/deposition additive manufacturing process continues to be of interest given the adverse effect these features have on part quality. A computational method is employed here to investigate potential volatile-induced micro-void nucleation mechanism which simulates the evolution of a single rigid ellipsoidal fiber in purely viscous polymer extrusion/deposition flow through a Large Area Additive Manufacturing (LAAM) nozzle. Our previous studies on potential micro-void nucleation mechanisms have assumed a Newtonian fluid property definition for the polymer melt flow, the current study assesses the effect of assuming a generalized Newtonian fluid (GNF) model on the fiber’s response. Preliminary findings based on Jeffery’s flow assumption reveal the fiber’s orientation kinetics are unaffected by the shear thinning fluid behavior, however there is a reduction in the pressure distribution on the fiber’s surface as the power law index is decreased which is expected to reduce the likelihood for microvoid nucleation.more » « less