Attempting the hands-on activities typical of makerspaces without in-person expert facilitation can lead to frustration and decreased engagement. This study aims to explore the collaboration affordances of REACH, a novel communication device that allows users to share gestures around a common artifact while in separate locations. Using a modified version of the divergent collaborative learning mechanisms framework (DCLM), this paper highlights the affordances of REACH to support students in collaboratively engaging in joint attention and boundary spanning perception and action, even when they are physically disparate.
more »
« less
Potentials of Virtual Social Spaces for Construction Education
The reality of COVID-19 public health concerns and increasing demand for distance education have forced educators to move to online delivery of their courses. Particularly in construction education, the majority of physical location-based educational activities (e.g., labs, site visits, or field trips) have been canceled during the pandemic that results in reducing students’ engagement, learning motivation, and cognitive achievement. Virtual Social Spaces (VSS) with innovative interaction affordances and immersive experience are well poised to supplement current online construction education. This paper discusses the potentials of VSS for construction education while focusing on the common applications of VSS, the communication and collaboration affordances of VSS, and design principles of this technology based on 15 popular VSS platforms. Overall, VSS applications are mainly found in education, entertainment, and socializing. The main communication and collaboration affordances of VSS include avatars, multi-user support, asynchronous commenting, synchronous chat, and visual-sharing affordances. These technical features illustrate the potentials of VSS for improving online construction education quality, eliminating the challenges associated with geographical dispersion of students, and decreasing the students’ lack of engagement.
more »
« less
- Award ID(s):
- 1821852
- PAR ID:
- 10380219
- Date Published:
- Journal Name:
- EPiC Series in Built Environment
- Volume:
- 2
- ISSN:
- 2632-881X
- Page Range / eLocation ID:
- 469 to 459
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Site visits or field trips are widely recognized by construction educators to engage students in active learning, supplement traditional lessons, and achieve better student learning experiences. However, site visits pose significant logistical and accessibility challenges for educational institutions and teachers, limiting the number of students who can benefit from them. Moreover, the restrictions on site visits have widened recently, as the reality of COVID-19 public health concerns have compelled instructors to fast-transition to online course delivery, canceling most site visits. The purpose of this study is to present construction students with online site visits to supplement contextualized learning in risky, unsafe, or impossible-to-achieve situations. In this project, Mozilla Hubs® was used to establish a virtual collaborative environment that resembled a real-world site visit to a building facility. A pilot study (i.e., a plan-reading assessment) was employed within the virtual environment that provided affordances involving an in-depth learning experience through collaborative communication. The findings demonstrate that virtual collaborative site visits give unique chances to deliver spatiotemporal contexts of sites online and provide an effective remote alternative when these learning opportunities are unavailable.more » « less
-
Barker, Megan K (Ed.)ABSTRACT Collaboration and communication are important competencies for undergraduate life science education, as noted in theVision and Change in Undergraduate Biology Educationreport. However, initiating collaboration and communication in the classroom can be an anxiety-inducing experience for many students. In contrast to traditional-style icebreakers, we introduce a course content-focused icebreaker activity that served as a group-forming undertaking on the first day of class. We developed four sets of handouts (icebreaker tickets), each having a common course theme (e.g., microbiology, cell biology, physiological system infections/disorders, virology). Students were randomly provided with a ticket at the beginning of the course, and they worked to establish groups with their peers, based on their own interpretation of the ticket’s content and rationalization of a grouping scheme. Student feedback and engagement data collected from implementation at three independent institutions were largely positive, where students reported the activity to be an effective tool for building a course content-focused community of learners. The icebreaker tickets and instructor’s notes disseminated in this manuscript can be adapted to fit educators’ course goals and help set the tone for the first day of the class and beyond that fosters communication and collaboration among students.more » « less
-
null (Ed.)Over the past two decades, educators have used computer-supported collaborative learning (CSCL) to integrate technology with pedagogy to improve student engagement and learning outcomes. Researchers have also explored the diverse affordances of CSCL, its contributions to engineering instruction, and its effectiveness in K-12 STEM education. However, the question of how students use CSCL resources in undergraduate engineering classrooms remains largely unexplored. This study examines the affordances of a CSCL environment utilized in a sophomore dynamics course with particular attention given to the undergraduate engineering students’ use of various CSCL resources. The resources include a course lecturebook, instructor office hours, a teaching assistant help room, online discussion board, peer collaboration, and demonstration videos. This qualitative study uses semi-structured interview data collected from nine mechanical engineering students (four women and five men) who were enrolled in a dynamics course at a large public research university in Eastern Canada. The interviews focused on the individual student’s perceptions of the school, faculty, students, engineering courses, and implemented CSCL learning environment. The thematic analysis was conducted to analyze the transcribed interviews using a qualitative data analysis software (Nvivo). The analysis followed a six step process: (1) reading interview transcripts multiple times and preliminary in vivo codes; (2) conducting open coding by coding interesting or salient features of the data; (3) collecting codes and searching for themes; (4) reviewing themes and creating a thematic map; (5) finalizing themes and their definitions; and (6) compiling findings. This study found that the students’ use of CSCL resources varied depending on the students’ personal preferences, as well as their perceptions of the given resource’s value and its potential to enhance their learning. For example, the dynamics lecturebook, which had been redesigned to encourage problem solving and note-taking, fostered student collaborative problem solving with their peers. In contrast, the professor’s example video solutions had much more of an influence on students’ independent problem-solving processes. The least frequently used resource was the course’s online discussion forum, which could be used as a means of communication. The findings reveal how computer-supported collaborative learning (CSCL) environments enable engineering students to engage in multiple learning opportunities with diverse and flexible resources to both address and to clarify their personal learning needs. This study strongly recommends engineering instructors adapt a CSCL environment for implementation in their own unique classroom context.more » « less
-
null (Ed.)Cherchiglia et al. Effects of ESM Use for Classroom Teams Proceedings of the Nineteenth Annual Pre-ICIS Workshop on HCI Research in MIS, Virtual Conference, December 12, 2020 1 An Exploration of the Effects of Enterprise Social Media Use for Classroom Teams Leticia Cherchiglia Michigan State University leticia@msu.edu Wietske Van Osch HEC Montreal & Michigan State University wietske.van-osch@hec.ca Yuyang Liang Michigan State University liangyuy@msu.edu Elisavet Averkiadi Michigan State University averkiad@msu.edu ABSTRACT This paper explores the adoption of Microsoft Teams, a group-based Enterprise Social Media (ESM) tool, in the context of a hybrid Information Technology Management undergraduate course from a large midwestern university. With the primary goal of providing insights into the use and design of tools for group-based educational settings, we constructed a model to reflect our expectations that core ESM affordances would enhance students’ perceptions of Microsoft Teams’ functionality and efficiency, which in turn would increase both students’ perceptions of group productivity and students’ actual usage of Microsoft Teams for communication purposes. In our model we used three core ESM affordances from Treem and Leonardi (2013), namely editability (i.e., information can be created and/or edited after creation, usually in a collaborative fashion), persistence (i.e., information is stored permanently), and visibility (i.e., information is visible to other users). Analysis of quantitative (surveys, server-side; N=62) and qualitative (interviews; N=7) data led to intriguing results. It seems that although students considered that editability, persistency, and visibility affordances within Microsoft Teams were convenient functions of this ESM, problems when working collaboratively (such as connectivity, formatting, and searching glitches) might have prevented considerations of this ESM as fast and user-friendly (i.e., efficient). Moreover, although perceived functionality and efficiency were positively connected to group productivity, hidden/non-intuitive communication features within this ESM might help explain the surprising negative connection between efficiency and usage of this ESM for the purpose of group communication. Another explanation is that, given the plethora of competing tools specifically designed to afford seamless/optimal team communication, students preferred to use more familiar tools or tools perceived as more efficient for group communication than Microsoft Teams, a finding consistent with findings in organizational settings (Van Osch, Steinfield, and Balogh, 2015). Beyond theoretical contributions related to the impact that ESM affordances have on users’ interaction perceptions, and the impact of users’ interaction perceptions on team and system outcomes, from a strategic and practical point of view, our findings revealed several challenges for the use of Microsoft Teams (and perhaps ESM at large) in educational settings: 1) As the demand for online education grows, collaborative tools such as Microsoft Teams should strive to provide seamless experiences for multiple-user access to files and messages; 2) Microsoft Teams should improve its visual design in order to increase ease of use, user familiarity, and intuitiveness; 3) Microsoft Teams appears to have a high-learning curve, partially related to the fact that some features are hidden or take extra steps/clicks to be accessed, thus undermining their use; 4) Team communication is a complex topic which should be further studied because, given the choice, students will fall upon familiar tools therefore undermining the full potential for team collaboration through the ESM. We expect that this paper can provide insights for educators faced with the choice for an ESM tool best-suited for group-based classroom settings, as well as designers interested in adapting ESMs to educational contexts, which is a promising avenue for market expansion.more » « less
An official website of the United States government

