skip to main content


Title: Toward scalable fabrication of electrochemical paper sensor without surface functionalization
Abstract Paper-based electrochemical sensors provide the opportunity for low-cost, portable and environmentally friendly single-use chemical analysis and there are various reports of surface-functionalized paper electrodes. Here we report a composite paper electrode that is fabricated through designed papermaking using cellulose, carbon fibers (CF), and graphene oxide (GO). The composite paper has well-controlled structure, stable, and repeatable properties, and offers the electrocatalytic activities for sensitive and selective chemical detection. We demonstrate that this CF/GO/cellulose composite paper can be reduced electrochemically using relatively mild conditions and this GO reduction confers electrocatalytic properties to the composite paper. Finally, we demonstrate that this composite paper offers sensing performance (sensitivity and selectivity) comparable to, or better than, paper-based sensors prepared by small-batch surface-modification (e.g., printing) methods. We envision this coupling of industrialized papermaking technologies with interfacial engineering and electrochemical reduction can provide a platform for single-use and portable chemical detection for a wide range of applications.  more » « less
Award ID(s):
1932963
NSF-PAR ID:
10380221
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
npj Flexible Electronics
Volume:
6
Issue:
1
ISSN:
2397-4621
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Graphene oxide (GO) nanosheets are a promising class of carbon‐based materials suitable for application in the construction of medical devices. These materials have inherent antimicrobial properties based on sheet size, but these effects must be carefully traded off to maintain biocompatibility. Chemical modification of functional groups to the lattice structure of GO nanosheets enables unique opportunities to introduce new surface properties to bolster biological effects. Herein, we have developed nitric oxide (NO)‐releasing GO nanosheets via immobilization ofS‐nitrosothiol (RSNO) moieties to GO nanosheets (GO‐[NH]x‐SNO). These novel RSNO‐based GO nanosheets were characterized for chemical functionality via Fourier transform infrared spectroscopy, x‐ray photoelectron spectroscopy, and colorimetric assays for functional group quantification. Stoichiometric control of the available RSNO groups functionalized onto the nanosheets was studied using chemiluminescence‐based NO detection methods, showing highly tunable NO release kinetics. Studies of electrical stimulation and subsequent electrochemical reduction of the nanosheets demonstrated further tunability of the NO release based on stimuli. Finally, nanosheets were evaluated for cytotoxicity and antibacterial effects, showing strong cytocompatibility with human fibroblasts in parallel to broad antibacterial and anti‐biofilm effects against both Gram‐positive and Gram‐negative strains. In summary, derivatized GO‐(NH)x‐SNO nanosheets were shown to have tunable NO release properties, enabling application‐specific tailoring for diverse biomedical applications such as antimicrobial coatings and composite fillers for stents, sensors, and other medical devices.

     
    more » « less
  2. Carbon fiber-based structural lithium-ion batteries are attracting significant attention in the automotive and aerospace industries due to their dual capability of energy storage and mechanical load-bearing, leading to weight reduction. These batteries utilize lightweight carbon fiber (CF) composites, which offer excellent stiffness, strength-to-weight ratios, and electrical conductivity. Polyacrylonitrile-based CFs, comprising graphitic and amorphous carbon, are particularly suitable for Li-ion battery applications as they allow the storage of lithium ions. However, integrating lithium iron phosphate (LFP) into CFs poses challenges due to complex lab-scale processes and the use of toxic dispersants, hindering large-scale industrial compatibility. To address this, we investigate the development of water-based LFP-integrated CF structural Li-ion batteries. Homogeneous suspensions are created using cellulose nanocrystals (CNCs) to form hybrid structures. The battery system employs LFP-modified CF as the cathode, unsized CF as the anode, and a water-based electrolyte. The LFP-CNC-graphene nanoplatelet (GNP) hybrids are coated onto CFs through immersion coating. Scanning electron microscopy (SEM) images confirm the well-dispersed and well-adhered LFP-CNC-GNP structures on the CF surface, contributing to their mechanical interlocking and electrochemical performance. The batteries demonstrate a specific energy density of 62.67 Wh/kg and a specific capacity of 72.7 mAh/g. Furthermore, the cyclic voltammetry experiments reveal the stability of the LFP-CNC-GNP-coated CF batteries over 200 cycles without degradation. This research enables the engineering of hybrid nanostructured battery laminates using novel LFP-CNC-GNP-coated CFs, opening avenues for the development of innovative Li-ion structural batteries. 
    more » « less
  3. This paper reports an integrated dual-modality microfluidic sensor chip, consisting of a patterned periodic array of nanoposts coated with gold (Au) and graphene oxide (GO), to detect target biomarker molecules in a limited sample volume. The device generates both electrochemical and surface plasmon resonance (SPR) signals from a single sensing area of Au–GO nanoposts. The Au–GO nanoposts are functionalized with specific receptor molecules, serving as a spatially well-defined nanostructured working electrode for electrochemical sensing, as well as a nanostructured plasmonic crystal for SPR-based sensing via the excitation of surface plasmon polaritons. High sensitivity of the electrochemical measurement originates from the presence of the nanoposts on the surface of the working electrode where radial diffusion of redox species occurs. Complementarily, the SPR detection allows convenient tracking of dynamic antigen–antibody interactions, to describe the association and dissociation phases occurring at the sensor surface. The soft-lithographically formed nanoposts provide high reproducibility of the sensor response to epidermal growth factor receptor ( ErbB2 ) molecules even at a femtomolar level. Sensitivities of the electrochemical measurements to ErbB2 are found to be 20.47 μA μM −1 cm −2 in a range from 1 fM to 0.1 μM, and those of the SPR measurements to be 1.35 nm μM −1 in a range from 10 pM to 1 nM, and 0.80 nm μM −1 in a range from 1 nM to 0.1 μM. The integrated dual-modality sensor offers higher sensitivity (through higher surface area and diffusions from nanoposts for electrochemical measurements), as well as the dynamic measurements of antigen–antibody bindings (through the SPR measurement), while operating simultaneously in a same sensing area using the same sample volume. 
    more » « less
  4. Colorimetric sensors offer the prospect for on-demand sensing diagnostics in simple and low-cost form factors, enabling rapid spatiotemporal inspection by digital cameras or the naked eye. However, realizing strong dynamic color variations in response to small changes in sample properties has remained a considerable challenge, which is often pursued through the use of highly responsive materials under broadband illumination. In this work, we demonstrate a general colorimetric sensing technique that overcomes the performance limitations of existing chromatic and luminance-based sensing techniques. Our approach combines structural color optical filters as sensing elements alongside a multichromatic laser illuminant. We experimentally demonstrate our approach in the context of label-free biosensing and achieve ultrasensitive and perceptually enhanced chromatic color changes in response to refractive index changes and small molecule surface attachment. Using structurally enabled chromaticity variations, the human eye is able to resolve ∼0.1-nm spectral shifts with low-quality factor (e.g., Q ∼ 15) structural filters. This enables spatially resolved biosensing in large area (approximately centimeters squared) lithography-free sensing films with a naked eye limit of detection of ∼3 pg/mm 2 , lower than industry standard sensors based on surface plasmon resonance that require spectral or angular interrogation. This work highlights the key roles played by both the choice of illuminant and design of structural color filter, and it offers a promising pathway for colorimetric devices to meet the strong demand for high-performance, rapid, and portable (or point-of-care) diagnostic sensors in applications spanning from biomedicine to environmental/structural monitoring. 
    more » « less
  5. Abstract

    2D early transition metal carbide and nitride MXenes have intriguing properties for electrochemical energy storage and electrocatalysis. These properties can be manipulated by modifying the basal plane chemistry. Here, mixed transition metal nitride MXenes, M‐Ti4N3Tx(M = V, Cr, Mo, or Mn; Tx= O and/or OH), are developed by modifying pristine exfoliated Ti4N3TxMXene with V, Cr, Mo, and Mn salts using a simple solution‐based method. The resulting mixed transition metal nitride MXenes contain 6–51% metal loading (cf. Ti) that exhibit rich electrochemistry including highly tunable hydrogen evolution reaction (HER) electrocatalytic activity in a 0.5mH2SO4electrolyte as follows: V‐Ti4N3Tx> Cr‐Ti4N3Tx> Mo‐Ti4N3Tx> Mn‐Ti4N3Tx> pristine Ti4N3Txwith overpotentials as low as 330 mV at −10 mA cm−2with a charge‐transfer resistance of 70 Ω. Scanning electrochemical microscopy (SECM) reveals the electrochemical activity of individual MXene flakes. The SECM data corroborate the bulk HER activity trend for M‐Ti4N3Txas well as provide the first experimental evidence that HER results from catalysis on the MXene basal plane. These electrocatalytic results demonstrate a new pathway to tune the electrochemical properties of MXenes for water splitting and related electrochemical applications.

     
    more » « less