This paper reports an integrated dual-modality microfluidic sensor chip, consisting of a patterned periodic array of nanoposts coated with gold (Au) and graphene oxide (GO), to detect target biomarker molecules in a limited sample volume. The device generates both electrochemical and surface plasmon resonance (SPR) signals from a single sensing area of Au–GO nanoposts. The Au–GO nanoposts are functionalized with specific receptor molecules, serving as a spatially well-defined nanostructured working electrode for electrochemical sensing, as well as a nanostructured plasmonic crystal for SPR-based sensing via the excitation of surface plasmon polaritons. High sensitivity of the electrochemical measurement originates from the presence of the nanoposts on the surface of the working electrode where radial diffusion of redox species occurs. Complementarily, the SPR detection allows convenient tracking of dynamic antigen–antibody interactions, to describe the association and dissociation phases occurring at the sensor surface. The soft-lithographically formed nanoposts provide high reproducibility of the sensor response to epidermal growth factor receptor ( ErbB2 ) molecules even at a femtomolar level. Sensitivities of the electrochemical measurements to ErbB2 are found to be 20.47 μA μM −1 cm −2 in a range from 1 fM to 0.1 μM, and those of the SPR measurements to bemore »
This content will become publicly available on December 1, 2023
Toward scalable fabrication of electrochemical paper sensor without surface functionalization
Abstract Paper-based electrochemical sensors provide the opportunity for low-cost, portable and environmentally friendly single-use chemical analysis and there are various reports of surface-functionalized paper electrodes. Here we report a composite paper electrode that is fabricated through designed papermaking using cellulose, carbon fibers (CF), and graphene oxide (GO). The composite paper has well-controlled structure, stable, and repeatable properties, and offers the electrocatalytic activities for sensitive and selective chemical detection. We demonstrate that this CF/GO/cellulose composite paper can be reduced electrochemically using relatively mild conditions and this GO reduction confers electrocatalytic properties to the composite paper. Finally, we demonstrate that this composite paper offers sensing performance (sensitivity and selectivity) comparable to, or better than, paper-based sensors prepared by small-batch surface-modification (e.g., printing) methods. We envision this coupling of industrialized papermaking technologies with interfacial engineering and electrochemical reduction can provide a platform for single-use and portable chemical detection for a wide range of applications.
- Award ID(s):
- 1932963
- Publication Date:
- NSF-PAR ID:
- 10380221
- Journal Name:
- npj Flexible Electronics
- Volume:
- 6
- Issue:
- 1
- ISSN:
- 2397-4621
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Colorimetric sensors offer the prospect for on-demand sensing diagnostics in simple and low-cost form factors, enabling rapid spatiotemporal inspection by digital cameras or the naked eye. However, realizing strong dynamic color variations in response to small changes in sample properties has remained a considerable challenge, which is often pursued through the use of highly responsive materials under broadband illumination. In this work, we demonstrate a general colorimetric sensing technique that overcomes the performance limitations of existing chromatic and luminance-based sensing techniques. Our approach combines structural color optical filters as sensing elements alongside a multichromatic laser illuminant. We experimentally demonstrate our approach in the context of label-free biosensing and achieve ultrasensitive and perceptually enhanced chromatic color changes in response to refractive index changes and small molecule surface attachment. Using structurally enabled chromaticity variations, the human eye is able to resolve ∼0.1-nm spectral shifts with low-quality factor (e.g., Q ∼ 15) structural filters. This enables spatially resolved biosensing in large area (approximately centimeters squared) lithography-free sensing films with a naked eye limit of detection of ∼3 pg/mm 2 , lower than industry standard sensors based on surface plasmon resonance that require spectral or angular interrogation. This work highlights the key roles playedmore »
-
Light-addressable electrochemical sensors (LAESs) are a class of sensors that use light to activate an electrochemical reaction on the surface of a semiconducting photoelectrode. Here, we investigate semiconductor/metal (Schottky) junctions formed between n-type Si and Au nanoparticles as lightaddressable electrochemical sensors. To demonstrate this concept, we prepared n-Si/Au nanoparticle Schottky junctions by electrodeposition and characterized them using scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. We found that the sensors behaved almost identically to Au disk electrodes for the oxidation of an outer-sphere redox couple (ferrocene methanol) and two inner-sphere redox couples (potassium ferrocyanide and dopamine). In buffered dopamine solutions, we observed broad linear ranges and submicromolar detection limits. We then used local illumination to generate a virtual array of electrochemical sensors for dopamine as a strategy for circumventing sensor fouling, which is a persistent problem for electrochemical dopamine sensors. By locally illuminating a small portion of the photoelectrode, many measurements of fouling analytes can be made on a single sensor with a single electrical connection by moving the light beam to a fresh area of the sensor. Altogether, these results pave the way for Schottky junction light-addressable electrochemical sensors to be useful for a number of interesting futuremore »
-
Biomass is abundant, inexpensive and renewable, therefore, it is highly expected to play a significant role in our future energy and chemical landscapes. The US DOE has identified furanic compounds (furfural and 5-(hydroxymethyl)furfural (HMF)) as the top platform building-block chemicals that can be readily derived from biomass sources [1]. Electrocatalytic conversion of these furanic compounds is an emerging route for the sustainable production of valuable chemicals [2, 3]. In my presentation, I will first present our recent mechanistic study of electrochemical reduction of furfural through a combination of voltammetry, preparative electrolysis, thiol-electrode modifications, and kinetic isotope studies [4]. It is demonstrated that two distinct mechanisms are operable on metallic Cu electrodes in acidic electrolytes: (i) electrocatalytic hydrogenation (ECH) and (ii) direct electroreduction. The contributions of each mechanism to the observed product distribution are clarified by evaluating the requirement for direct chemical interactions with the electrode surface and the role of adsorbed hydrogen. Further analysis reveals that hydrogenation and hydrogenolysis products are generated by parallel ECH pathways. Understanding the underlying mechanisms enables the manipulation of furfural reduction by rationally tuning the electrode potential, electrolyte pH, and furfural concentration to promote selective formation of important bio-based polymer precursors and fuels. Next, Imore »
-
There has been an increasing need of technologies to manufacturing chemical and biological sensors for various applications ranging from environmental monitoring to human health monitoring. Currently, manufacturing of most chemical and biological sensors relies on a variety of standard microfabrication techniques, such as physical vapor deposition and photolithography, and materials such as metals and semiconductors. Though functional, they are hampered by high cost materials, rigid substrates, and limited surface area. Paper based sensors offer an intriguing alternative that is low cost, mechanically flexible, has the inherent ability to filter and separate analytes, and offers a high surface area, permeable framework advantageous to liquid and vapor sensing. However, a major drawback is that standard microfabrication techniques cannot be used in paper sensor fabrication. To fabricate sensors on paper, low temperature additive techniques must be used, which will require new manufacturing processes and advanced functional materials. In this work, we focus on using aerosol jet printing as a highresolution additive process for the deposition of ink materials to be used in paper-based sensors. This technique can use a wide variety of materials with different viscosities, including materials with high porosity and particles inherent to paper. One area of our efforts involves creatingmore »