skip to main content


Title: Inferring Human-Robot Performance Objectives During Locomotion Using Inverse Reinforcement Learning and Inverse Optimal Control
Award ID(s):
1808898
NSF-PAR ID:
10380231
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE Robotics and Automation Letters
Volume:
7
Issue:
2
ISSN:
2377-3774
Page Range / eLocation ID:
2549 to 2556
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Inverse reinforcement learning (IRL) deals with estimating an agent’s utility function from its actions. In this paper, we consider how an agent can hide its strategy and mitigate an adversarial IRL attack; we call this inverse IRL (I-IRL). How should the decision maker choose its response to ensure a poor reconstruction of its strategy by an adversary performing IRL to estimate the agent’s strategy? This paper comprises four results: First, we present an adversarial IRL algorithm that estimates the agent’s strategy while controlling the agent’s utility function. Then, we propose an I-IRL result that mitigates the IRL algorithm used by the adversary. Our I-IRL results are based on revealed preference theory in microeconomics. The key idea is for the agent to deliberately choose sub-optimal responses so that its true strategy is sufficiently masked. Third, we give a sample complexity result for our main I-IRL result when the agent has noisy estimates of the adversary-specified utility function. Finally, we illustrate our I-IRL scheme in a radar problem where a meta-cognitive radar is trying to mitigate an adversarial target. 
    more » « less
  2. Great storytellers know how to take us on a journey. They direct characters to act—not necessarily in the most rational way—but rather in a way that leads to interesting situations, and ultimately creates an impactful experience for audience members looking on. If audience experience is what matters most, then can we help artists and animators directly craft such experiences, independent of the concrete character actions needed to evoke those experiences? In this paper, we offer a novel computational framework for such tools. Our key idea is to optimize animations with respect to simulated audience members’ experiences. To simulate the audience, we borrow an established principle from cognitive science: that human social intuition can be modeled as “inverse planning,” the task of inferring an agent’s (hidden) goals from its (observed) actions. Building on this model, we treat storytelling as “inverse inverse planning,” the task of choosing actions to manipulate an inverse planner’s inferences. Our framework is grounded in literary theory, naturally capturing many storytelling elements from first principles. We give a series of examples to demonstrate this, with supporting evidence from human subject studies. 
    more » « less
  3. Gatherings of thousands to millions of people frequently occur for an enormous variety of events, and automated counting of these high-density crowds is useful for safety, management, and measuring significance of an event. In this work, we show that the regularly accepted labeling scheme of crowd density maps for training deep neural networks is less effective than our alternative inverse k-nearest neighbor (i$k$NN) maps, even when used directly in existing state-of-the-art network structures. We also provide a new network architecture MUD-i$k$NN, which uses multi-scale upsampling via transposed convolutions to take full advantage of the provided i$k$NN labeling. This upsampling combined with the i$k$NN maps further improves crowd counting accuracy. Our new network architecture performs favorably in comparison with the state-of-the-art. However, our labeling and upsampling techniques are generally applicable to existing crowd counting architectures. 
    more » « less