skip to main content


Title: Intermolecular vibrational states of HF trimer from rigorous nine-dimensional quantum calculations: Strong coupling between intermolecular bending and stretching vibrations and the importance of the three-body interactions

We present the computational methodology that allows rigorous and efficient nine-dimensional (9D) quantum calculations of the intermolecular vibrational states of noncovalently bound trimers of diatomic molecules, with the monomers treated as rigid. The full 9D vibrational Hamiltonian of the trimer is partitioned into a 3D “frame” (or stretching) Hamiltonian and a 6D “bend” Hamiltonian. These two Hamiltonians are diagonalized separately, and a certain number of their lowest-energy eigenstates is included in the final 9D product contracted basis in which the full 9D intermolecular vibrational Hamiltonian is diagonalized. This methodology is applied to the 9D calculations of the intermolecular vibrational levels of (HF)3, a prototypical hydrogen-bonded trimer, on the rigid-monomer version of an ab initio calculated potential energy surface (PES). They are the first to include fully the stretch-bend coupling present in the trimer. The frequencies of all bending fundamentals considered from the present 9D calculations are about 10% lower than those from the earlier quantum 6D calculations that considered only the bending modes of the HF trimer. This means that the stretch-bend coupling is strong, and it is imperative to include it in any accurate treatment of the (HF)3 vibrations aiming to assess the accuracy of the PES employed. Moreover, the 9D results are in better agreement with the limited available spectroscopic data that those from the 6D calculations. In addition, the 9D results show sensitivity to the value of the HF bond length, equilibrium or vibrationally averaged, used in the calculations. The implication is that full-dimensional 12D quantum calculations will be required to obtain definitive vibrational excitation energies for a given PES. Our study also demonstrates that the nonadditive three-body interactions are very significant in (HF)3 and have to be included in order to obtain accurate intermolecular vibrational energy levels of the trimer.

 
more » « less
Award ID(s):
2054616
NSF-PAR ID:
10380256
Author(s) / Creator(s):
;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
157
Issue:
19
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Phenol–benzimidazole and phenol–pyridine proton-coupled electron transfer (PCET) dyad systems are computationally investigated to resolve the origins of the asymmetrically broadened H-bonded OH stretch transitions that have been previously reported using cryogenic ion vibrational spectroscopy in the ground electronic state. Two-dimensional (2D) potentials describing the strongly shared H atom are predicted to be very shallow along the H atom transfer coordinate, enabling dislocation of the H atom between the donor and acceptor groups upon excitation of the OH vibrational modes. These soft H atom potentials result in strong coupling between the OH modes, which exhibit significant bend-stretch mixing, and a large number of normal mode coordinates. Vibrational spectra are calculated using a Hamiltonian that linearly and quadratically couples the H atom potentials to over two dozen of the most strongly coupled normal modes treated at the harmonic level. The calculated vibrational spectra qualitatively reproduce the asymmetric shape and breadth of the experimentally observed bands in the 2300–3000 cm–1 range. Interestingly, these transitions fall well above the predicted OH stretch fundamentals, which are computed to be surprisingly red-shifted (<2000 cm–1). Time-dependent calculations predict rapid (<100 fs) relaxation of the excited OH modes and instant response from the lower-frequency normal modes, corroborating the strong coupling predicted by the model Hamiltonian. The results highlight a unique broadening mechanism and complicated anharmonic effects present within these biologically relevant PCET model systems. 
    more » « less
  2. First, high-resolution sub-Doppler infrared spectroscopic results for cyclopentyl radical (C 5 H 9 ) are reported on the α-CH stretch fundamental with suppression of spectral congestion achieved by adiabatic cooling to T rot ≈ 19(4) K in a slit jet expansion. Surprisingly, cyclopentyl radical exhibits a rotationally assignable infrared spectrum, despite 3N − 6 = 36 vibrational modes and an upper vibrational state density (ρ ≈ 40–90 #/cm −1 ) in the critical regime (ρ ≈ 100 #/cm −1 ) necessary for onset of intramolecular vibrational relaxation (IVR) dynamics. Such high-resolution data for cyclopentyl radical permit detailed fits to a rigid-rotor asymmetric top Hamiltonian, initial structural information for ground and vibrationally excited states, and opportunities for detailed comparison with theoretical predictions. Specifically, high level ab initio calculations at the coupled-cluster singles, doubles, and perturbative triples (CCSD(T))/ANO0, 1 level are used to calculate an out-of-plane bending potential, which reveals a C 2 symmetry double minimum 1D energy surface over a C 2v transition state. The inversion barrier [V barrier ≈ 3.7(1) kcal/mol] is much larger than the effective moment of inertia for out-of-plane bending, resulting in localization of the cyclopentyl wavefunction near its C 2 symmetry equilibrium geometry and tunneling splittings for the ground state too small (<1 MHz) to be resolved under sub-Doppler slit jet conditions. The persistence of fully resolved high-resolution infrared spectroscopy for such large cyclic polyatomic radicals at high vibrational state densities suggests a “deceleration” of IVR for a cycloalkane ring topology, much as low frequency torsion/methyl rotation degrees of freedom have demonstrated a corresponding “acceleration” of IVR processes in linear hydrocarbons. 
    more » « less
  3. The infrared spectra of jet-cooled methyl anthranilate (MA) and the MA–H 2 O complex are reported in both S 0 and S 1 states, recorded using fluorescence-dip infrared (FDIR) spectroscopy under jet-cooled conditions. Using a combination of local mode CH stretch modeling and scaled harmonic vibrational character, a near-complete assignment of the infrared spectra is possible over the 1400–3700 cm −1 region. While the NH stretch fundamentals are easily observed in the S 0 spectrum, in the S 1 state, the hydrogen bonded NH stretch shift is not readily apparent. Scaled harmonic calculations predict this fundamental at just below 2900 cm −1 with an intensity around 400 km mol −1 . However, the experimental spectrum shows no evidence of this transition. A local mode theory is developed in which the NH stretch vibration is treated adiabatically. Minimizing the energy of the corresponding stretch state with one quantum of excitation leads to a dislocation of the H atom where there is equal sharing between N and O atoms. The sharing occurs as a result of significant molecular arrangement due to strong coupling of this NH stretch to other internal degrees of freedom and in particular to the contiguous HNC bend. A two-dimensional model of the coupling between the NH stretch and this bend highlights important nonlinear effects that are not captured by low order vibrational perturbation theory. In particular, the model predicts a dramatic dilution of the NH stretch oscillator strength over many transitions spread over more than 1000 cm −1 , making it difficult to observe experimentally. 
    more » « less
  4. Some reactions produce extremely hot nascent-products which nevertheless can form sufficiently long-lived van der Waals (vdW) complexes—with atoms or molecules from a bath gas—as to be observed via microwave spectroscopy. Theoretical calculations of such unbound resonance-states can be much more challenging than ordinary bound-state calculations depending on the approach employed. One encounters not only the floppy, and perhaps multi-welled potential energy surface (PES) characteristic of vdWs complexes, but in addition must contend with excitation of the intramolecular modes and its corresponding influence on the PES. Straightforward computation of the (resonance) rovibrational levels of interest, involves the added complication of the unbound nature of the wavefunction, often treated with techniques such as introducing a complex absorbing potential. Here, we have demonstrated that a simplified approach of making a series of vibrationally effective PESs for the intermolecular coordinates—one for each reaction product vibrational quantum number of interest—can produce vdW levels for the complex with spectroscopic accuracy. This requires constructing a series of appropriately weighted lower-dimensional PESs for which we use our freely available PES-fitting code AUTOSURF. The applications of this study are the Ar–CS and Ar–SiS complexes, which are isovalent to Ar–CO and Ar–SiO, the latter of which we considered in a previously reported study. Using a series of vibrationally effective PESs, rovibrational levels and predicted microwave transition frequencies for both complexes were computed variationally. A series of shifting rotational transition frequencies were also computed as a function of the diatom vibrational quantum number. The predicted transitions were used to guide and inform an experimental effort to make complementary observations. Comparisons are given for the transitions that are within the range of the spectrometer and were successfully recorded. Calculations of the rovibrational level pattern agree to within 0.2 % with experimental measurements. 
    more » « less
  5. In a recent article [AIP Adv. 11, 045033 (2021)], we carried out exact quantum dynamical calculations and computed ro-vibrational energy levels and wave functions for the H 3 + molecular ion up to the dissociation threshold (at J = 46) using a recently developed potential energy surface (PES) [Mol. Phys. 117, 1663 (2019)]—arguably, the most accurate to date —together with the ScalIT suite of parallel codes. In this work, we further improved the convergence accuracy and range of our ScalIT calculations for all J values up to J = 20 to a few 10 –5  cm −1 (or better). In addition, we performed an ab initio assignment of the ro-vibrational energy levels, providing vibrational ‘ v 1 , v 2 , | l |’ and rotational ‘ J , G , U , K ’ quantum labels for more than 2,200 ro-vibrational states, including every single 0 ≤ J ≤ 20 state up to and above the barrier to linearity at 10,000 cm −1 . The main underlying motivation of our work is to provide a list of reliably labeled, spectroscopically accurate energy levels in a format that can be used in spectroscopic line lists, which are based on both experimental and theoretical levels. Such line lists are of huge importance in various astrochemical and astrophysical contexts. 
    more » « less