skip to main content

Title: Toward the Automated Detection of Light Echoes in Synoptic Surveys: Considerations on the Application of Deep Convolutional Neural Networks

Light echoes (LEs) are the reflections of astrophysical transients off of interstellar dust. They are fascinating astronomical phenomena that enable studies of the scattering dust as well as of the original transients. LEs, however, are rare and extremely difficult to detect as they appear as faint, diffuse, time-evolving features. The detection of LEs still largely relies on human inspection of images, a method unfeasible in the era of large synoptic surveys. The Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) will generate an unprecedented amount of astronomical imaging data at high spatial resolution, exquisite image quality, and over tens of thousands of square degrees of sky: an ideal survey for LEs. However, the Rubin data processing pipelines are optimized for the detection of point sources and will entirely miss LEs. Over the past several years, artificial intelligence (AI) object-detection frameworks have achieved and surpassed real-time, human-level performance. In this work, we leverage a data set from the Asteroid Terrestrial-impact Last Alert System telescope to test a popular AI object-detection framework, You Only Look Once, or YOLO, developed by the computer-vision community, to demonstrate the potential of AI for the detection of LEs in astronomical images. We find that an AI framework can reach human-level performance even with a size- and quality-limited data set. We explore and highlight challenges, including class imbalance and label incompleteness, and road map the work required to build an end-to-end pipeline for the automated detection and study of LEs in high-throughput astronomical surveys.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astronomical Journal
Medium: X Size: Article No. 250
["Article No. 250"]
Sponsoring Org:
National Science Foundation
More Like this

    The next generation of wide-field deep astronomical surveys will deliver unprecedented amounts of images through the 2020s and beyond. As both the sensitivity and depth of observations increase, more blended sources will be detected. This reality can lead to measurement biases that contaminate key astronomical inferences. We implement new deep learning models available through Facebook AI Research’s detectron2 repository to perform the simultaneous tasks of object identification, deblending, and classification on large multiband co-adds from the Hyper Suprime-Cam (HSC). We use existing detection/deblending codes and classification methods to train a suite of deep neural networks, including state-of-the-art transformers. Once trained, we find that transformers outperform traditional convolutional neural networks and are more robust to different contrast scalings. Transformers are able to detect and deblend objects closely matching the ground truth, achieving a median bounding box Intersection over Union of 0.99. Using high-quality class labels from the Hubble Space Telescope, we find that when classifying objects as either stars or galaxies, the best-performing networks can classify galaxies with near 100 per cent completeness and purity across the whole test sample and classify stars above 60 per cent completeness and 80 per cent purity out to HSC i-band magnitudes of 25 mag. This framework can be extended to other upcoming deep surveys such as the Legacy Survey of Space and Time and those with the Roman Space Telescope to enable fast source detection and measurement. Our code, deepdisc, is publicly available at

    more » « less
  2. Abstract

    We present a study of the potential for convolutional neural networks (CNNs) to enable separation of astrophysical transients from image artifacts, a task known as “real–bogus” classification, without requiring a template-subtracted (or difference) image, which requires a computationally expensive process to generate, involving image matching on small spatial scales in large volumes of data. Using data from the Dark Energy Survey, we explore the use of CNNs to (1) automate the real–bogus classification and (2) reduce the computational costs of transient discovery. We compare the efficiency of two CNNs with similar architectures, one that uses “image triplets” (templates, search, and difference image) and one that takes as input the template and search only. We measure the decrease in efficiency associated with the loss of information in input, finding that the testing accuracy is reduced from ∼96% to ∼91.1%. We further investigate how the latter model learns the required information from the template and search by exploring the saliency maps. Our work (1) confirms that CNNs are excellent models for real–bogus classification that rely exclusively on the imaging data and require no feature engineering task and (2) demonstrates that high-accuracy (>90%) models can be built without the need to construct difference images, but some accuracy is lost. Because, once trained, neural networks can generate predictions at minimal computational costs, we argue that future implementations of this methodology could dramatically reduce the computational costs in the detection of transients in synoptic surveys like Rubin Observatory's Legacy Survey of Space and Time by bypassing the difference image analysis entirely.

    more » « less

    Studies of cosmology, galaxy evolution, and astronomical transients with current and next-generation wide-field imaging surveys like the Rubin Observatory Legacy Survey of Space and Time are all critically dependent on estimates of photometric redshifts. Capsule networks are a new type of neural network architecture that is better suited for identifying morphological features of the input images than traditional convolutional neural networks. We use a deep capsule network trained on ugriz images, spectroscopic redshifts, and Galaxy Zoo spiral/elliptical classifications of ∼400 000 Sloan Digital Sky Survey galaxies to do photometric redshift estimation. We achieve a photometric redshift prediction accuracy and a fraction of catastrophic outliers that are comparable to or better than current methods for SDSS main galaxy sample-like data sets (r ≤ 17.8 and zspec ≤ 0.4) while requiring less data and fewer trainable parameters. Furthermore, the decision-making of our capsule network is much more easily interpretable as capsules act as a low-dimensional encoding of the image. When the capsules are projected on a two-dimensional manifold, they form a single redshift sequence with the fraction of spirals in a region exhibiting a gradient roughly perpendicular to the redshift sequence. We perturb encodings of real galaxy images in this low-dimensional space to create synthetic galaxy images that demonstrate the image properties (e.g. size, orientation, and surface brightness) encoded by each dimension. We also measure correlations between galaxy properties (e.g. magnitudes, colours, and stellar mass) and each capsule dimension. We publicly release our code, estimated redshifts, and additional catalogues at

    more » « less

    New time-domain surveys, such as the Vera C. Rubin Observatory Legacy Survey of Space and Time, will observe millions of transient alerts each night, making standard approaches of visually identifying new and interesting transients infeasible. We present two novel methods of automatically detecting anomalous transient light curves in real-time. Both methods are based on the simple idea that if the light curves from a known population of transients can be accurately modelled, any deviations from model predictions are likely anomalies. The first modelling approach is a probabilistic neural network built using Temporal Convolutional Networks (TCNs) and the second is an interpretable Bayesian parametric model of a transient. We demonstrate our methods’ ability to provide anomaly scores as a function of time on light curves from the Zwicky Transient Facility. We show that the flexibility of neural networks, the attribute that makes them such a powerful tool for many regression tasks, is what makes them less suitable for anomaly detection when compared with our parametric model. The parametric model is able to identify anomalies with respect to common supernova classes with high precision and recall scores, achieving area under the precision-recall curves above 0.79 for most rare classes such as kilonovae, tidal disruption events, intermediate luminosity transients, and pair-instability supernovae. Our ability to identify anomalies improves over the lifetime of the light curves. Our framework, used in conjunction with transient classifiers, will enable fast and prioritized followup of unusual transients from new large-scale surveys.

    more » « less
  5. Abstract

    Current and future optical and near-infrared wide-field surveys have the potential to find kilonovae, the optical and infrared counterparts to neutron star mergers, independently of gravitational-wave or high-energy gamma-ray burst triggers. The ability to discover fast and faint transients such as kilonovae largely depends on the area observed, the depth of those observations, the number of revisits per field in a given time frame, and the filters adopted by the survey; it also depends on the ability to perform rapid follow-up observations to confirm the nature of the transients. In this work, we assess kilonova detectability in existing simulations of the Legacy Survey of Space and Time strategy for the Vera C. Rubin Wide Fast Deep survey, with focus on comparing rolling to baseline cadences. Although currently available cadences can enable the detection of >300 kilonovae out to ∼1400 Mpc over the 10 year survey, we can expect only 3–32 kilonovae similar to GW170817 to be recognizable as fast-evolving transients. We also explore the detectability of kilonovae over the plausible parameter space, focusing on viewing angle and ejecta masses. We find that observations in redderizybands are crucial for identification of nearby (within 300 Mpc) kilonovae that could be spectroscopically classified more easily than more distant sources. Rubin’s potential for serendipitous kilonova discovery could be increased by gain of efficiency with the employment of individual 30 s exposures (as opposed to 2 × 15 s snap pairs), with the addition of red-band observations coupled with same-night observations ingorrbands, and possibly with further development of a new rolling-cadence strategy.

    more » « less