skip to main content


Title: Detection, instance segmentation, and classification for astronomical surveys with deep learning ( deepdisc ): detectron2 implementation and demonstration with Hyper Suprime-Cam data
ABSTRACT

The next generation of wide-field deep astronomical surveys will deliver unprecedented amounts of images through the 2020s and beyond. As both the sensitivity and depth of observations increase, more blended sources will be detected. This reality can lead to measurement biases that contaminate key astronomical inferences. We implement new deep learning models available through Facebook AI Research’s detectron2 repository to perform the simultaneous tasks of object identification, deblending, and classification on large multiband co-adds from the Hyper Suprime-Cam (HSC). We use existing detection/deblending codes and classification methods to train a suite of deep neural networks, including state-of-the-art transformers. Once trained, we find that transformers outperform traditional convolutional neural networks and are more robust to different contrast scalings. Transformers are able to detect and deblend objects closely matching the ground truth, achieving a median bounding box Intersection over Union of 0.99. Using high-quality class labels from the Hubble Space Telescope, we find that when classifying objects as either stars or galaxies, the best-performing networks can classify galaxies with near 100 per cent completeness and purity across the whole test sample and classify stars above 60 per cent completeness and 80 per cent purity out to HSC i-band magnitudes of 25 mag. This framework can be extended to other upcoming deep surveys such as the Legacy Survey of Space and Time and those with the Roman Space Telescope to enable fast source detection and measurement. Our code, deepdisc, is publicly available at https://github.com/grantmerz/deepdisc.

 
more » « less
Award ID(s):
2308174 1725729
NSF-PAR ID:
10465660
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
526
Issue:
1
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 1122-1137
Size(s):
["p. 1122-1137"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We apply a new deep learning technique to detect, classify, and deblend sources in multiband astronomical images. We train and evaluate the performance of an artificial neural network built on the Mask Region-based Convolutional Neural Network image processing framework, a general code for efficient object detection, classification, and instance segmentation. After evaluating the performance of our network against simulated ground truth images for star and galaxy classes, we find a precision of 92 per cent at 80 per cent recall for stars and a precision of 98 per cent at 80 per cent recall for galaxies in a typical field with ∼30 galaxies arcmin−2. We investigate the deblending capability of our code, and find that clean deblends are handled robustly during object masking, even for significantly blended sources. This technique, or extensions using similar network architectures, may be applied to current and future deep imaging surveys such as Large Synoptic Survey Telescope and Wide-Field Infrared Survey Telescope. Our code, astro r-cnn, is publicly available at https://github.com/burke86/astro_rcnn.

     
    more » « less
  2. e apply a new deep learning technique to detect, classify, and deblend sources in multi-band astronomical images. We train and evaluate the performance of an artificial neural network built on the Mask R-CNN image processing framework, a general code for efficient object detection, classification, and instance segmentation. After evaluating the performance of our network against simulated ground truth images for star and galaxy classes, we find a precision of 92% at 80% recall for stars and a precision of 98% at 80% recall for galaxies in a typical field with ∼30 galaxies/arcmin2. We investigate the deblending capability of our code, and find that clean deblends are handled robustly during object masking, even for significantly blended sources. This technique, or extensions using similar network architectures, may be applied to current and future deep imaging surveys such as LSST and WFIRST. Our code, Astro R-CNN, is publicly available at https://github.com/burke86/astro_rcnn 
    more » « less
  3. ABSTRACT We present the results of a proof-of-concept experiment that demonstrates that deep learning can successfully be used for production-scale classification of compact star clusters detected in Hubble Space Telescope(HST) ultraviolet-optical imaging of nearby spiral galaxies ($D\lesssim 20\, \textrm{Mpc}$) in the Physics at High Angular Resolution in Nearby GalaxieS (PHANGS)–HST survey. Given the relatively small nature of existing, human-labelled star cluster samples, we transfer the knowledge of state-of-the-art neural network models for real-object recognition to classify star clusters candidates into four morphological classes. We perform a series of experiments to determine the dependence of classification performance on neural network architecture (ResNet18 and VGG19-BN), training data sets curated by either a single expert or three astronomers, and the size of the images used for training. We find that the overall classification accuracies are not significantly affected by these choices. The networks are used to classify star cluster candidates in the PHANGS–HST galaxy NGC 1559, which was not included in the training samples. The resulting prediction accuracies are 70 per cent, 40 per cent, 40–50 per cent, and 50–70 per cent for class 1, 2, 3 star clusters, and class 4 non-clusters, respectively. This performance is competitive with consistency achieved in previously published human and automated quantitative classification of star cluster candidate samples (70–80 per cent, 40–50 per cent, 40–50 per cent, and 60–70 per cent). The methods introduced herein lay the foundations to automate classification for star clusters at scale, and exhibit the need to prepare a standardized data set of human-labelled star cluster classifications, agreed upon by a full range of experts in the field, to further improve the performance of the networks introduced in this study. 
    more » « less
  4. ABSTRACT

    We present a mock image catalogue of ∼100 000 MUV ≃ −22.5 to −19.6 mag galaxies at z = 7–12 from the bluetides cosmological simulation. We create mock images of each galaxy with the James Webb Space Telescope (JWST), Hubble, Roman, and Euclid Space Telescopes, as well as Subaru, and VISTA, with a range of near- and mid-infrared filters. We perform photometry on the mock images to estimate the success of these instruments for detecting high-z galaxies. We predict that JWST will have unprecedented power in detecting high-z galaxies, with a 95 per cent completeness limit at least 2.5 mag fainter than VISTA and Subaru, 1.1 mag fainter than Hubble, and 0.9 mag fainter than Roman, for the same wavelength and exposure time. Focusing on JWST, we consider a range of exposure times and filters, and find that the NIRCam F356W and F277W filters will detect the faintest galaxies, with 95 per cent completeness at m ≃ 27.4 mag in 10-ks exposures. We also predict the number of high-z galaxies that will be discovered by upcoming JWST imaging surveys. We predict that the COSMOS-Web survey will detect ∼1000 M1500 Å < −20.1 mag galaxies at 6.5 < z < 7.5, by virtue of its large survey area. JADES-Medium will detect almost $100{{\ \rm per\ cent}}$ of M1500 Å ≲ −20 mag galaxies at z < 8.5 due to its significant depth, however, with its smaller survey area it will detect only ∼100 of these galaxies at 6.5 < z < 7.5. Cosmic variance results in a large range in the number of predicted galaxies each survey will detect, which is more evident in smaller surveys such as CEERS and the PEARLS NEP and GOODS-S fields.

     
    more » « less
  5. Abstract

    Giant star-forming clumps (GSFCs) are areas of intensive star-formation that are commonly observed in high-redshift (z ≳ 1) galaxies but their formation and role in galaxy evolution remain unclear. Observations of low-redshift clumpy galaxy analogues are rare but the availability of wide-field galaxy survey data makes the detection of large clumpy galaxy samples much more feasible. Deep Learning (DL), and in particular Convolutional Neural Networks (CNNs), have been successfully applied to image classification tasks in astrophysical data analysis. However, one application of DL that remains relatively unexplored is that of automatically identifying and localizing specific objects or features in astrophysical imaging data. In this paper, we demonstrate the use of DL-based object detection models to localize GSFCs in astrophysical imaging data. We apply the Faster Region-based Convolutional Neural Network object detection framework (FRCNN) to identify GSFCs in low-redshift (z ≲ 0.3) galaxies. Unlike other studies, we train different FRCNN models on observational data that was collected by the Sloan Digital Sky Survey and labelled by volunteers from the citizen science project ‘Galaxy Zoo: Clump Scout’. The FRCNN model relies on a CNN component as a ‘backbone’ feature extractor. We show that CNNs, that have been pre-trained for image classification using astrophysical images, outperform those that have been pre-trained on terrestrial images. In particular, we compare a domain-specific CNN – ‘Zoobot’ – with a generic classification backbone and find that Zoobot achieves higher detection performance. Our final model is capable of producing GSFC detections with a completeness and purity of ≥0.8 while only being trained on ∼5000 galaxy images.

     
    more » « less