skip to main content


Title: Plethora of tunable Weyl fermions in kagome magnet Fe3Sn2 thin films
Abstract

Interplay of magnetism and electronic band topology in unconventional magnets enables the creation and fine control of novel electronic phenomena. In this work, we use scanning tunneling microscopy and spectroscopy to study thin films of a prototypical kagome magnet Fe3Sn2. Our experiments reveal an unusually large number of densely-spaced spectroscopic features straddling the Fermi level. These are consistent with signatures of low-energy Weyl fermions and associated topological Fermi arc surface states predicted by theory. By measuring their response as a function of magnetic field, we discover a pronounced evolution in energy tied to the magnetization direction. Electron scattering and interference imaging further demonstrates the tunable nature of a subset of related electronic states. Our experiments provide a direct visualization of how in-situ spin reorientation drives changes in the electronic density of states of the Weyl fermion band structure. Combined with previous reports of massive Dirac fermions, flat bands, and electronic nematicity, our work establishes Fe3Sn2as an interesting platform that harbors an extraordinarily wide array of topological and correlated electron phenomena.

 
more » « less
Award ID(s):
1654041
NSF-PAR ID:
10380321
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Quantum Materials
Volume:
7
Issue:
1
ISSN:
2397-4648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the optical conductivity in high-quality crystals of the chiral topological semimetal CoSi, which hosts exotic quasiparticles known as multifold fermions. We find that the optical response is separated into several distinct regions as a function of frequency, each dominated by different types of quasiparticles. The low-frequency intraband response is captured by a narrow Drude peak from a high-mobility electron pocket of double Weyl quasiparticles, and the temperature dependence of the spectral weight is consistent with its Fermi velocity. By subtracting the low-frequency sharp Drude and phonon peaks at low temperatures, we reveal two intermediate quasilinear interband contributions separated by a kink at 0.2 eV. Using Wannier tight-binding models based on first-principle calculations, we link the optical conductivity above and below 0.2 eV to interband transitions near the double Weyl fermion and a threefold fermion, respectively. We analyze and determine the chemical potential relative to the energy of the threefold fermion, revealing the importance of transitions between a linearly dispersing band and a flat band. More strikingly, below 0.1 eV our data are best explained if spin-orbit coupling is included, suggesting that at these energies, the optical response is governed by transitions between a previously unobserved fourfold spin-3/2 node and a Weyl node. Our comprehensive combined experimental and theoretical study provides a way to resolve different types of multifold fermions in CoSi at different energy. More broadly, our results provide the necessary basis to interpret the burgeoning set of optical and transport experiments in chiral topological semimetals.

     
    more » « less
  2. Abstract

    Single crystalline BaMnSb2is considered as a 3D Weyl semimetal with the 2D electronic structure containing Dirac cones from the Sb sheet. We report experimental investigation of low-temperature cleaved BaMnSb2surfaces using scanning tunneling microscopy/spectroscopy and low energy electron diffraction. By natural cleavage, we find two terminations: one is Ba (above the orthorhombically distorted Sb sheet) and another Sb2 (at the surface of the Sb/Mn/Sb sandwich layer). Both terminations show the 2 × 1 surface reconstructions, with drastically different morphologies and electronic properties, however. The reconstructed structures, defect types and nature of the electronic structures of the two terminations are extensively studied. The quasiparticle interference (QPI) analysis is conducted at the energy range between −2 V and 2 V, although no interesting states are observed near the Fermi level, the surface-projected electronic band structures strongly depend on the surface termination above 1.6 V. The existence of defects can greatly modify the local density of states to create electronic phase separations on the surface in the order of tens of nm scale. Our observation on the atomic structures of the terminations and the corresponding electronic structures provides critical information towards an understanding of topological properties of BaMnSb2.

     
    more » « less
  3. Abstract

    We report a theoretical investigation of effects of Mn and Co substitution in the transition metal sites of the kagomé-lattice ferromagnet, Fe3Sn2. Herein, hole- and electron-doping effects of Fe3Sn2have been studied by density-functional theory calculations on the parent phase and on the substituted structural models of Fe3−xMxSn2(M = Mn, Co;x= 0.5, 1.0). All optimized structures favor the ferromagnetic ground state. Analysis of the electronic density of states (DOS) and band structure plots reveals that the hole (electron) doping leads to a progressive decrease (increase) in the magnetic moment per Fe atom and per unit cell overall. The high DOS is retained nearby the Fermi level in the case of both Mn and Co substitutions. The electron doping with Co results in the loss of nodal band degeneracies, while in the case of hole doping with Mn emergent nodal band degeneracies and flatbands initially are suppressed in Fe2.5Mn0.5Sn2but re-emerge in Fe2MnSn2. These results provide key insights into potential modifications of intriguing coupling between electronic and spin degrees of freedom observed in Fe3Sn2.

     
    more » « less
  4. Abstract

    Relativistic Weyl fermion quasiparticles in Weyl semimetal bring the electron’s chirality degree of freedom into the electrical transport and give rise to exotic phenomena. A topological phase transition from a topological trivial phase to a topological non-trivial phase offers a route to control electronic devices through its topological properties. Here, we report the Weyl semimetal phase in hydrothermally grown two-dimensional Tellurium (2D Te) induced by high hydrostatic pressure (up to 2.47 GPa). The unique chiral crystal structure gives rise to chiral fermions with different topological chiral charges ($${{C}}=-{{1}},+{{1}},{{and}}-{{2}}$$C=1,+1,and2). The highly tunable chemical potential in 2D Te provides comprehensive information for understanding the pressure-dependent electron band structure. The pressure-induced insulator-to-metal transition, two-carrier transport, and the non-trivial π Berry phase shift in quantum oscillations are observed in the 2D Te Weyl semimetal phase. Our work demonstrates the pressure-induced bandgap closing in the inversion asymmetric narrow bandgap semiconductor 2D Te.

     
    more » « less
  5. Topological semimetals are predicted to exhibit unconventional electrodynamics, but a central experimental challenge is singling out the contributions from the topological bands. TaAs is the prototypical example, where 24 Weyl points and 8 trivial Fermi surfaces make the interpretation of any experiment in terms of band topology ambiguous. We report magneto-infrared reflection spectroscopy measurements on TaAs. We observed sharp inter-Landau level transitions from a single pocket of Weyl Fermions in magnetic fields as low as 0.4 tesla. We determine the W2 Weyl point to be 8.3 meV below the Fermi energy, corresponding to a quantum limit—the field required to reach the lowest LL—of 0.8 tesla—unprecedentedly low for Weyl Fermions. LL spectroscopy allows us to isolate these Weyl Fermions from all other carriers in TaAs, and our result provides a way for directly exploring the more exotic quantum phenomena in Weyl semimetals, such as the chiral anomaly. 
    more » « less