skip to main content

Title: Integrated Population Models: Achieving Their Potential

Precise and accurate estimates of abundance and demographic rates are primary quantities of interest within wildlife conservation and management. Such quantities provide insight into population trends over time and the associated underlying ecological drivers of the systems. This information is fundamental in managing ecosystems, assessing species conservation status and developing and implementing effective conservation policy. Observational monitoring data are typically collected on wildlife populations using an array of different survey protocols, dependent on the primary questions of interest. For each of these survey designs, a range of advanced statistical techniques have been developed which are typically well understood. However, often multiple types of data may exist for the same population under study. Analyzing each data set separately implicitly discards the common information contained in the other data sets. An alternative approach that aims to optimize the shared information contained within multiple data sets is to use a “model-based data integration” approach, or more commonly referred to as an “integrated model.” This integrated modeling approach simultaneously analyzes all the available data within a single, and robust, statistical framework. This paper provides a statistical overview of ecological integrated models, with a focus on integrated population models (IPMs) which include abundance and demographic rates as quantities of interest. Four main challenges within this area are discussed, namely model specification, computational aspects, model assessment and forecasting. This should encourage researchers to explore further and develop new practical tools to ensure that full utility can be made of IPMs for future studies.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of Statistical Theory and Practice
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Structured demographic models are among the most common and useful tools in population biology. However, the introduction of integral projection models (IPMs) has caused a profound shift in the way many demographic models are conceptualized. Some researchers have argued that IPMs, by explicitly representing demographic processes as continuous functions of state variables such as size, are more statistically efficient, biologically realistic, and accurate than classic matrix projection models, calling into question the usefulness of the many studies based on matrix models. Here, we evaluate how IPMs and matrix models differ, as well as the extent to which these differences matter for estimation of key model outputs, including population growth rates, sensitivity patterns, and life spans. First, we detail the steps in constructing and using each type of model. Second, we present a review of published demographic models, concentrating on size‐based studies, which shows significant overlap in the way IPMs and matrix models are constructed and analyzed. Third, to assess the impact of various modeling decisions on demographic predictions, we ran a series of simulations based on size‐based demographic data sets for five biologically diverse species. We found little evidence that discrete vital rate estimation is less accurate than continuous functions across a wide range of sample sizes or size classes (equivalently bin numbers or mesh points). Most model outputs quickly converged with modest class numbers (≥10), regardless of most other modeling decisions. Another surprising result was that the most commonly used method to discretize growth rates for IPM analyses can introduce substantial error into model outputs. Finally, we show that empirical sample sizes generally matter more than modeling approach for the accuracy of demographic outputs. Based on these results, we provide specific recommendations to those constructing and evaluating structured population models. Both our literature review and simulations question the treatment of IPMs as a clearly distinct modeling approach or one that is inherently more accurate than classic matrix models. Importantly, this suggests that matrix models, representing the vast majority of past demographic analyses available for comparative and conservation work, continue to be useful and important sources of demographic information.

    more » « less
  2. Abstract

    Integral projection models (IPMs) can estimate the population dynamics of species for which both discrete life stages and continuous variables influence demographic rates. Stochastic IPMs for imperiled species, in turn, can facilitate population viability analyses (PVAs) to guide conservation decision‐making. Biphasic amphibians are globally distributed, often highly imperiled, and ecologically well suited to the IPM approach. Herein, we present a stochastic size‐ and stage‐structured IPM for a biphasic amphibian, the U.S. federally threatened California tiger salamander (CTS) (Ambystoma californiense). This Bayesian model reveals that CTS population dynamics show greatest elasticity to changes in juvenile and metamorph growth and that populations are likely to experience rapid growth at low density. We integrated this IPM with climatic drivers of CTS demography to develop a PVA and examined CTS extinction risk under the primary threats of habitat loss and climate change. The PVA indicated that long‐term viability is possible with surprisingly high (20%–50%) terrestrial mortality but simultaneously identified likely minimum terrestrial buffer requirements of 600–1000 m while accounting for numerous parameter uncertainties through the Bayesian framework. These analyses underscore the value of stochastic and Bayesian IPMs for understanding both climate‐dependent taxa and those with cryptic life histories (e.g., biphasic amphibians) in service of ecological discovery and biodiversity conservation. In addition to providing guidance for CTS recovery, the contributed IPM and PVA supply a framework for applying these tools to investigations of ecologically similar species.

    more » « less
  3. Abstract

    Data deficiencies among rare or cryptic species preclude assessment of community‐level processes using many existing approaches, limiting our understanding of the trends and stressors for large numbers of species. Yet evaluating the dynamics of whole communities, not just common or charismatic species, is critical to understanding and the responses of biodiversity to ongoing environmental pressures.

    A recent surge in both public science and government‐funded data collection efforts has led to a wealth of biodiversity data. However, these data collection programmes use a wide range of sampling protocols (from unstructured, opportunistic observations of wildlife to well‐structured, design‐based programmes) and record information at a variety of spatiotemporal scales. As a result, available biodiversity data vary substantially in quantity and information content, which must be carefully reconciled for meaningful ecological analysis.

    Hierarchical modelling, including single‐species integrated models and hierarchical community models, has improved our ability to assess and predict biodiversity trends and processes. Here, we highlight the emerging ‘integrated community modelling’ framework that combines both data integration and community modelling to improve inferences on species‐ and community‐level dynamics.

    We illustrate the framework with a series of worked examples. Our three case studies demonstrate how integrated community models can be used to extend the geographic scope when evaluating species distributions and community‐level richness patterns; discern population and community trends over time; and estimate demographic rates and population growth for communities of sympatric species. We implemented these worked examples using multiple software methods through the R platform via packages with formula‐based interfaces and through development of custom code in JAGS, NIMBLE and Stan.

    Integrated community models provide an exciting approach to model biological and observational processes for multiple species using multiple data types and sources simultaneously, thus accounting for uncertainty and sampling error within a unified framework. By leveraging the combined benefits of both data integration and community modelling, integrated community models can produce valuable information about both common and rare species as well as community‐level dynamics, allowing for holistic evaluation of the effects of global change on biodiversity.

    more » « less

    Within the contiguous USA, Florida is unique in having tropical and subtropical climates, a great abundance and diversity of mosquito vectors, and high rates of human travel. These factors contribute to the state being the national ground zero for exotic mosquito-borne diseases, as evidenced by local transmission of viruses spread by Aedes aegypti, including outbreaks of dengue in 2022 and Zika in 2016. Because of limited treatment options, integrated vector management is a key part of mitigating these arboviruses. Practical knowledge of when and where mosquito populations of interest exist is critical for surveillance and control efforts, and habitat predictions at various geographic scales typically rely on ecological niche modeling. However, most of these models, usually created in partnership with academic institutions, demand resources that otherwise may be too time-demanding or difficult for mosquito control programs to replicate and use effectively. Such resources may include intensive computational requirements, high spatiotemporal resolutions of data not regularly available, and/or expert knowledge of statistical analysis. Therefore, our study aims to partner with mosquito control agencies in generating operationally useful mosquito abundance models. Given the increasing threat of mosquito-borne disease transmission in Florida, our analytic approach targets recent Ae. aegypti abundance in the Tampa Bay area. We investigate explanatory variables that: 1) are publicly available, 2) require little to no preprocessing for use, and 3) are known factors associated with Ae. aegypti ecology. Out of our 4 final models, none required more than 5 out of the 36 predictors assessed (13.9%). Similar to previous literature, the strongest predictors were consistently 3- and 4-wk temperature and precipitation lags, followed closely by 1 of 2 environmental predictors: land use/land cover or normalized difference vegetation index. Surprisingly, 3 of our 4 final models included one or more socioeconomic or demographic predictors. In general, larger sample sizes of trap collections and/or citizen science observations should result in greater confidence in model predictions and validation. However, given disparities in trap collections across jurisdictions, individual county models rather than a multicounty conglomerate model would likely yield stronger model fits. Ultimately, we hope that the results of our assessment will enable more accurate and precise mosquito surveillance and control of Ae. aegypti in Florida and beyond.

    more » « less
  5. Abstract

    A central debate in ecology has been the long‐running discussion on the role of apex predators in affecting the abundance and dynamics of their prey. In terrestrial systems, research has primarily relied on correlational approaches, due to the challenge of implementing robust experiments with replication and appropriate controls. A consequence of this is that we largely suffer from a lack of mechanistic understanding of the population dynamics of interacting species, which can be surprisingly complex. Mechanistic models offer an opportunity to examine the causes and consequences of some of this complexity. We present a bioenergetic mechanistic model of a tritrophic system where the primary vegetation resource follows a seasonal growth function, and the herbivore and carnivore species are modeled using two integral projection models (IPMs) with body mass as the phenotypic trait. Within each IPM, the demographic functions are structured according to bioenergetic principles, describing how animals acquire and transform resources into body mass, energy reserves, and breeding potential. We parameterize this model to reproduce the population dynamics of grass, elk, and wolves in northern Yellowstone National Park (USA) and investigate the impact of wolf reintroduction on the system. Our model generated predictions that closely matched the observed population sizes of elk and wolf in Yellowstone prior to and following wolf reintroduction. The introduction of wolves into our basal grass–elk bioenergetic model resulted in a population of 99 wolves and a reduction in elk numbers by 61% (from 14,948 to 5823) at equilibrium. In turn, vegetation biomass increased by approximately 25% in the growing season and more than threefold in the nongrowing season. The addition of wolves to the model caused the elk population to switch from being food‐limited to being predator‐limited and had a stabilizing effect on elk numbers across different years. Wolf predation also led to a shift in the phenotypic composition of the elk population via a small increase in elk average body mass. Our model represents a novel approach to the study of predator–prey interactions, and demonstrates that explicitly considering and linking bioenergetics, population demography and body mass phenotypes can provide novel insights into the mechanisms behind complex ecosystem processes.

    more » « less