skip to main content


Search for: All records

Award ID contains: 1954406

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aim

    Species distribution models (SDMs) are increasingly applied across macroscales using detection‐nondetection data. These models typically assume that a single set of regression coefficients can adequately describe species–environment relationships and/or population trends. However, such relationships often show nonlinear and/or spatially varying patterns that arise from complex interactions with abiotic and biotic processes that operate at different scales. Spatially varying coefficient (SVC) models can readily account for variability in the effects of environmental covariates. Yet, their use in ecology is relatively scarce due to gaps in understanding the inferential benefits that SVC models can provide compared to simpler frameworks.

    Innovation

    Here we demonstrate the inferential benefits of SVC SDMs, with a particular focus on how this approach can be used to generate and test ecological hypotheses regarding the drivers of spatial variability in population trends and species–environment relationships. We illustrate the inferential benefits of SVC SDMs with simulations and two case studies: one that assesses spatially varying trends of 51 forest bird species in the eastern United States over two decades and a second that evaluates spatial variability in the effects of five decades of land cover change on grasshopper sparrow (Ammodramus savannarum) occurrence across the continental United States.

    Main conclusions

    We found strong support for SVC SDMs compared to simpler alternatives in both empirical case studies. Factors operating at fine spatial scales, accounted for by the SVCs, were the primary divers of spatial variability in forest bird occurrence trends. Additionally, SVCs revealed complex species–habitat relationships with grassland and cropland area for grasshopper sparrow, providing nuanced insights into how future land use change may shape its distribution. These applications display the utility of SVC SDMs to help reveal the environmental factors that drive species distributions across both local and broad scales. We conclude by discussing the potential applications of SVC SDMs in ecology and conservation.

     
    more » « less
  2. Abstract

    Biogeographic history can lead to variation in biodiversity across regions, but it remains unclear how the degree of biogeographic isolation among communities may lead to differences in biodiversity. Biogeographic analyses generally treat regions as discrete units, but species assemblages differ in how much biogeographic history they share, just as species differ in how much evolutionary history they share. Here, we use a continuous measure of biogeographic distance, phylobetadiversity, to analyze the influence of biogeographic isolation on the taxonomic and functional diversity of global mammal and bird assemblages. On average, biodiversity is better predicted by environment than by isolation, especially for birds. However, mammals in deeply isolated regions are strongly influenced by isolation; mammal assemblages in Australia and Madagascar, for example, are much less diverse than predicted by environment alone and contain unique combinations of functional traits compared to other regions. Neotropical bat assemblages are far more functionally diverse than Paleotropical assemblages, reflecting the different trajectories of bat communities that have developed in isolation over tens of millions of years. Our results elucidate how long-lasting biogeographic barriers can lead to divergent diversity patterns, against the backdrop of environmental determinism that predominantly structures diversity across most of the world.

     
    more » « less
  3. Abstract

    Numerous modelling techniques exist to estimate abundance of plant and animal populations. The most accurate methods account for multiple complexities found in ecological data, such as observational biases, spatial autocorrelation, and species correlations. There is, however, a lack of user‐friendly and computationally efficient software to implement the various models, particularly for large data sets.

    We developed thespAbundance Rpackage for fitting spatially explicit Bayesian single‐species and multi‐species hierarchical distance sampling models, N‐mixture models, and generalized linear mixed models. The models within the package can account for spatial autocorrelation using Nearest Neighbour Gaussian Processes and accommodate species correlations in multi‐species models using a latent factor approach, which enables model fitting for data sets with large numbers of sites and/or species.

    We provide three vignettes and three case studies that highlightspAbundancefunctionality. We used spatially explicit multi‐species distance sampling models to estimate density of 16 bird species in Florida, USA, an N‐mixture model to estimate black‐throated blue warbler (Setophaga caerulescens) abundance in New Hampshire, USA, and a spatial linear mixed model to estimate forest above‐ground biomass across the continental USA.

    spAbundanceprovides a user‐friendly, formula‐based interface to fit a variety of univariate and multivariate spatially explicit abundance models. The package serves as a useful tool for ecologists and conservation practitioners to generate improved inference and predictions on the spatial drivers of abundance in populations and communities.

     
    more » « less
  4. Abstract

    Integrated community models—an emerging framework in which multiple data sources for multiple species are analyzed simultaneously—offer opportunities to expand inferences beyond the single‐species and single‐data‐source approaches common in ecology. We developed a novel integrated community model that combines distance sampling and single‐visit count data; within the model, information is shared among data sources (via a joint likelihood) and species (via a random‐effects structure) to estimate abundance patterns across a community. Parameters relating to abundance are shared between data sources, and the model can specify either shared or separate observation processes for each data source. Simulations demonstrated that the model provided unbiased estimates of abundance and detection parameters even when detection probabilities varied between the data types. The integrated community model also provided more accurate and more precise parameter estimates than alternative single‐species and single‐data‐source models in many instances. We applied the model to a community of 11 herbivore species in the Masai Mara National Reserve, Kenya, and found considerable interspecific variation in response to local wildlife management practices: Five species showed higher abundances in a region with passive conservation enforcement (median across species: 4.5× higher), three species showed higher abundances in a region with active conservation enforcement (median: 3.9× higher), and the remaining three species showed no abundance differences between the two regions. Furthermore, the community average of abundance was slightly higher in the region with active conservation enforcement but not definitively so (posterior mean: higher by 0.20 animals; 95% credible interval: 1.43 fewer animals, 1.86 more animals). Our integrated community modeling framework has the potential to expand the scope of inference over space, time, and levels of biological organization, but practitioners should carefully evaluate whether model assumptions are met in their systems and whether data integration is valuable for their applications.

     
    more » « less
  5. Abstract

    As data and computing power have surged in recent decades, statistical modeling has become an important tool for understanding ecological patterns and processes. Statistical modeling in ecology faces two major challenges. First, ecological data may not conform to traditional methods, and second, professional ecologists often do not receive extensive statistical training. In response to these challenges, the journalEcologyhas published many innovative statistical ecology papers that introduced novel modeling methods and provided accessible guides to statistical best practices. In this paper, we reflect onEcology's history and its role in the emergence of the subdiscipline of statistical ecology, which we define as the study of ecological systems using mathematical equations, probability, and empirical data. We showcase 36 influential statistical ecology papers that have been published inEcologyover the last century and, in so doing, comment on the evolution of the field. As data and computing power continue to increase, we anticipate continued growth in statistical ecology to tackle complex analyses and an expanding role forEcologyto publish innovative and influential papers, advancing the discipline and guiding practicing ecologists.

     
    more » « less
  6. Abstract

    Environmental and anthropogenic factors affect the population dynamics of migratory species throughout their annual cycles. However, identifying the spatiotemporal drivers of migratory species' abundances is difficult because of extensive gaps in monitoring data. The collection of unstructured opportunistic data by volunteer (citizen science) networks provides a solution to address data gaps for locations and time periods during which structured, design‐based data are difficult or impossible to collect.

    To estimate population abundance and distribution at broad spatiotemporal extents, we developed an integrated model that incorporates unstructured data during time periods and spatial locations when structured data are unavailable. We validated our approach through simulations and then applied the framework to the eastern North American migratory population of monarch butterflies during their spring breeding period in eastern Texas. Spring climate conditions have been identified as a key driver of monarch population sizes during subsequent summer and winter periods. However, low monarch densities during the spring combined with very few design‐based surveys in the region have limited the ability to isolate effects of spring weather variables on monarchs.

    Simulation results confirmed the ability of our integrated model to accurately and precisely estimate abundance indices and the effects of covariates during locations and time periods in which structured sampling are lacking. In our case study, we combined opportunistic monarch observations during the spring migration and breeding period with structured data from the summer Midwestern breeding grounds. Our model revealed a nonstationary relationship between weather conditions and local monarch abundance during the spring, driven by spatially varying vegetation and temperature conditions.

    Data for widespread and migratory species are often fragmented across multiple monitoring programs, potentially requiring the use of both structured and unstructured data sources to obtain complete geographic coverage. Our integrated model can estimate population abundance at broad spatiotemporal extents despite structured data gaps during the annual cycle by leveraging opportunistic data.

     
    more » « less
  7. Abstract

    Data deficiencies among rare or cryptic species preclude assessment of community‐level processes using many existing approaches, limiting our understanding of the trends and stressors for large numbers of species. Yet evaluating the dynamics of whole communities, not just common or charismatic species, is critical to understanding and the responses of biodiversity to ongoing environmental pressures.

    A recent surge in both public science and government‐funded data collection efforts has led to a wealth of biodiversity data. However, these data collection programmes use a wide range of sampling protocols (from unstructured, opportunistic observations of wildlife to well‐structured, design‐based programmes) and record information at a variety of spatiotemporal scales. As a result, available biodiversity data vary substantially in quantity and information content, which must be carefully reconciled for meaningful ecological analysis.

    Hierarchical modelling, including single‐species integrated models and hierarchical community models, has improved our ability to assess and predict biodiversity trends and processes. Here, we highlight the emerging ‘integrated community modelling’ framework that combines both data integration and community modelling to improve inferences on species‐ and community‐level dynamics.

    We illustrate the framework with a series of worked examples. Our three case studies demonstrate how integrated community models can be used to extend the geographic scope when evaluating species distributions and community‐level richness patterns; discern population and community trends over time; and estimate demographic rates and population growth for communities of sympatric species. We implemented these worked examples using multiple software methods through the R platform via packages with formula‐based interfaces and through development of custom code in JAGS, NIMBLE and Stan.

    Integrated community models provide an exciting approach to model biological and observational processes for multiple species using multiple data types and sources simultaneously, thus accounting for uncertainty and sampling error within a unified framework. By leveraging the combined benefits of both data integration and community modelling, integrated community models can produce valuable information about both common and rare species as well as community‐level dynamics, allowing for holistic evaluation of the effects of global change on biodiversity.

     
    more » « less
  8. Abstract

    Precise and accurate estimates of abundance and demographic rates are primary quantities of interest within wildlife conservation and management. Such quantities provide insight into population trends over time and the associated underlying ecological drivers of the systems. This information is fundamental in managing ecosystems, assessing species conservation status and developing and implementing effective conservation policy. Observational monitoring data are typically collected on wildlife populations using an array of different survey protocols, dependent on the primary questions of interest. For each of these survey designs, a range of advanced statistical techniques have been developed which are typically well understood. However, often multiple types of data may exist for the same population under study. Analyzing each data set separately implicitly discards the common information contained in the other data sets. An alternative approach that aims to optimize the shared information contained within multiple data sets is to use a “model-based data integration” approach, or more commonly referred to as an “integrated model.” This integrated modeling approach simultaneously analyzes all the available data within a single, and robust, statistical framework. This paper provides a statistical overview of ecological integrated models, with a focus on integrated population models (IPMs) which include abundance and demographic rates as quantities of interest. Four main challenges within this area are discussed, namely model specification, computational aspects, model assessment and forecasting. This should encourage researchers to explore further and develop new practical tools to ensure that full utility can be made of IPMs for future studies.

     
    more » « less
  9. Abstract

    Natural history collections (NHC) provide a wealth of information that can be used to understand the impacts of global change on biodiversity. As such, there is growing interest in using NHC data to estimate changes in species' distributions and abundance trends over historic time horizons when contemporary survey data are limited or unavailable.

    However, museum specimens were not collected with the purpose of estimating population trends and thus can exhibit spatiotemporal and collector‐specific biases that can impose severe limitations to using NHC data for evaluating population trajectories.

    Here we review the challenges associated with using museum records to track long‐term insect population trends, including spatiotemporal biases in sampling effort and sparse temporal coverage within and across years. We highlight recent methodological advancements that aim to overcome these challenges and discuss emerging research opportunities.

    Specifically, we examine the potential of integrating museum records and other contemporary data sources (e.g. collected via structured, designed surveys and opportunistic citizen science programs) in a unified analytical framework that accounts for the sampling biases associated with each data source. The emerging field of integrated modelling provides a promising framework for leveraging the wealth of collections data to accurately estimate long‐term trends of insect populations and identify cases where that is not possible using existing data sources.

     
    more » « less
  10. Abstract

    Effective conservation requires understanding species’ abundance patterns and demographic rates across space and time. Ideally, such knowledge should be available for whole communities because variation in species’ dynamics can elucidate factors leading to biodiversity losses. However, collecting data to simultaneously estimate abundance and demographic rates of communities of species is often prohibitively time intensive and expensive. We developed a multispecies dynamicN‐occupancy model to estimate unbiased, community‐wide relative abundance and demographic rates. In this model, detection–nondetection data (e.g., repeated presence–absence surveys) are used to estimate species‐ and community‐level parameters and the effects of environmental factors. To validate our model, we conducted a simulation study to determine how and when such an approach can be valuable and found that our multispecies model outperformed comparable single‐species models in estimating abundance and demographic rates in many cases. Using data from a network of camera traps across tropical equatorial Africa, we then used our model to evaluate the statuses and trends of a forest‐dwelling antelope community. We estimated relative abundance, rates of recruitment (i.e., reproduction and immigration), and apparent survival probabilities for each species’ local population. The antelope community was fairly stable (although 17% of populations [species–park combinations] declined over the study period). Variation in apparent survival was linked more closely to differences among national parks than to individual species’ life histories. The multispecies dynamicN‐occupancy model requires only detection–nondetection data to evaluate the population dynamics of multiple sympatric species and can thus be a valuable tool for examining the reasons behind recent biodiversity loss.

     
    more » « less