skip to main content


Title: Evaluation of Geopolymer for Stabilization of Sulfate-Rich Expansive Soils for Supporting Pavement Infrastructure
Stabilization of sulfate-rich expansive subgrade soils is a persistent cause of concern for transportation infrastructure engineers and practitioners. The application of traditional calcium-based stabilizers is generally not recommended for treating such soils because of the formation of deleterious reaction products such as ettringite. Sulfate-induced heaving causes severe structural damage to pavements and accounts for enormous expenditure from routine maintenance and rehabilitation activities. A research study was undertaken to evaluate the feasibility of using a metakaolin-based geopolymer (GP) for the treatment of sulfate-rich expansive soil. Laboratory studies were conducted on natural soil and artificially sulfate-rich soils, when treated with either lime or GP, to evaluate and compare the improvements in the engineering properties, including unconfined compressive strength, swelling and shrinkage, and resilient moduli characteristics over different curing periods. Microstructural studies, such as field emission scanning electron microscopy and X-ray diffraction, were performed on treated soils to detect the formation of reaction products. The engineering studies indicate that GP treatment enhanced strength and resilient moduli while suppressing ettringite formation and the associated swell–shrink potential of the treated soils. The microstructural studies showed that GP gels contribute to the improvement of these engineering properties through the formation of a uniform geopolymer matrix. In addition, the absence of a calcium source suppressed the formation of ettringite in the GP-treated soils. Overall, the findings indicate that GPs could be used as a potential alternative to existing traditional stabilizers for treating sulfate-rich expansive soils.  more » « less
Award ID(s):
2017796
NSF-PAR ID:
10380414
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Transportation Research Record: Journal of the Transportation Research Board
Volume:
2676
Issue:
9
ISSN:
0361-1981
Page Range / eLocation ID:
230 to 245
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Microbially Induced Calcite Precipitation (MICP), or bio-cementation, is a promising bio-mediated technology that can improve the engineering properties of soils through the precipitation of calcium carbonate. Despite significant advances in the technology, concerns regarding the fate of produced NH4+by-products have remained largely unaddressed. In this study, five 3.7-meter long soil columns each containing one of three different soils were improved using ureolytic bio-cementation, and post-treatment NH4+by-product removal was investigated during the application of 525 L of a high pH and high ionic strength rinse solution. During rinsing, reductions in aqueous NH4+were observed in all columns from initial concentrations between ≈100 mM to 500 mM to final values between ≈0.3 mM and 20 mM with higher NH4+concentrations observed at distances furthest from the injection well. In addition, soil Vsmeasurements completed during rinse injections suggested that no significant changes in cementation integrity occurred during NH4+removal. After rinsing and a 12 hour stop flow period, all column solutions achieved cumulative NH4+removals exceeding 97.9%. Soil samples collected following rinsing, however, contained significant sorbed NH4+masses that appeared to have a near linear relationship with surrounding aqueous NH4+concentrations. While these results suggest that NH4+can be successfully removed from bio-cemented soils, acceptable limits for NH4+aqueous concentrations and sorbed NH4+masses will likely be governed by site-specific requirements and may require further investigation and refinement of the developed techniques.

     
    more » « less
  2. Abstract

    Microbially Induced Desaturation and Precipitation (MIDP) through denitrification is an emerging ground improvement method in which indigenous nitrate reducing bacteria are stimulated to introduce biogas, biominerals and biomass in the soil matrix. In this study, a numerical model is developed to evaluate the effect of biogas, biominerals and biomass on the hydraulic properties of soils treated with MIDP. The proposed model couples the biochemical conversions to changes of porosity and water saturation and predicts changes in permeability through two separate power law equations. Experimental studies from the literature are used to calibrate the model. Comparing the results with other studies on bioclogging or biomineralization in porous media reveals that the combined production of biogas, biomass, and biominerals results in efficient clogging, in the sense that only a small amount of products leads to a substantial permeability reduction. Based on this comparison, the authors postulate that biogenic gas bubbles preferably form within the larger pore bodies. The presence of biogenic gas in the larger pore bodies forces calcium carbonate minerals and biomass to be formed mainly at the pore throats. The interaction between the different phases results in more efficient clogging than observed in other studies which focus on a single product only.

     
    more » « less
  3. Viana da Fonseca, António ; Ferreira, Cristiana (Ed.)
    Microbially induced carbonate precipitation (MICP) is a bio-mediated ground improvement technique that can increase soil stiffness and produce cohesion within granular material. Most experimental investigations on MICP-treated soils are performed on idealized granular materials. Evaluating a narrow range of particle sizes dismisses the potential influence of soil fabric on MICP treatment efficiency. Therefore, little is known regarding the influence of soil fabric on the level of improvement achievable post-MICP treatment. We investigate the influence of the coefficient of uniformity (Cu) on the level of improvement that can be obtained from MICP treatment. This study couples unconfined compression testing with microscale observations obtained from x-ray computed tomography (CT) of two sand mixtures with different Cu values. A soil column and CT specimen of each sand mixture were prepared and received the same number of MICP- injections. The shear wave velocity (Vs) of the soil columns was monitored to evaluate the increase in soil stiffness over time. After MICP treatment, the bio-cemented columns were subjected to unconfined compressive strength testing. Results indicate that for a similar mass of carbonate, the soil with a larger Cu experienced a greater increase in Vs but a lower maximum unconfined compressive strength. Through CT imaging, the soil with a smaller Cu was observed to have a more uniform distribution of carbonate within the sand matrix whereas the soil with a larger Cu has more sporadic MICP trends. This study elucidates the influence of soil fabric on the level of improvement that can be achieved through MICP treatment and assesses the reliability of x-ray CT scanning of MICP-treated sands with moderate carbonate content. 
    more » « less
  4. Microbially induced desaturation and precipitation (MIDP) via denitrification has the potential to reduce earthquake-induced liquefaction potential by two mechanisms: calcium carbonate precipitation to mechanically strengthen soil and biogenic gas production to desaturate and dampen pore pressure changes in soil. Lab-scale tests have demonstrated effective desaturation and improved mechanical strength by MIDP. However, in laboratory tests, gas pockets and lenses form causing upheaval as a result of low overburden pressures. The characteristics of biogenic gas formation, distribution, and retention need to be evaluated to gain comprehensive understanding of the effectiveness of this treatment at depth before and after an earthquake event. MIDP treatment during centrifuge loading conditions is being performed to simulate field stress conditions, prior to complete process scale-up for field application. A simplified numerical model was developed to evaluate the scaling effects on biogenic gas generation between the centrifuge model and prototype scale. The results indicate that diffusion of soluble N2 is negligible at both the model and prototype scales for the simulated reaction rate. However, the simplified model did not consider other pore-scale influences and mixing from liquid-gas transfer and transport. Future modeling work will need to add these features. 
    more » « less
  5. Semi-arid regions faced with increasingly scarce freshwater resources must manage competing demands in the food-energy-water nexus. A possible solution modifies soil hydrologic properties using biosurfactants to reduce evaporation and improve water retention. In this study, two different soil textures representative of agricultural soils in Kansas were treated with a direct application of the biosurfactant, Surfactin, and an indirect application via inoculation of Bacillus subtilis . Evaporation rates of the wetted soils were measured when exposed to artificial sunlight (1000 W/m 2 ) and compared to non-treated control soils. Experimental results indicate that both treatments alter soil moisture dynamics by increasing evaporation rates by when soil moisture is plentiful (i.e., constant rate period) and decreasing evaporation rates by when moisture is scarce (i.e., slower rate period). Furthermore, both treatments significantly reduced the soil moisture content at which the soil transitioned from constant rate to slower rate evaporation. Out of the two treatments, inoculation with B. subtilis generally produced greater changes in evaporation dynamics; for example, the treatment with B. subtilis in sandy loam soils increased constant rate periods of evaporation by 43% and decreased slower rate evaporation by 49%. In comparing the two soil textures, the sandy loam soil exhibited a larger treatment effect than the loam soil. To evaluate the potential significance of the treatment effects, a System Dynamics Model operationalized the evaporation rate results and simulated soil moisture dynamics under typical daily precipitation conditions. The results from this model indicate both treatment methods significantly altered soil moisture dynamics in the sandy loam soils and increased the probability of the soil exhibiting constant rate evaporation relative to the control soils. Overall, these findings suggest that the decrease in soil moisture threshold observed in the experimental setting could increase soil moisture availability by prolonging the constant rate stage of evaporation. As inoculation with B. subtilis in the sandy loam soil had the most pronounced effects in both the experimental and simulated contexts, future work should focus on testing this treatment in field trials with similar soil textures. 
    more » « less