Analyzing lipid assemblies, including liposomes and extracellular vesicles (EVs), is challenging due to their size, diverse composition, and tendency to aggregate. Such vesicles form with a simple phospholipid bilayer membrane, and they play important roles in drug discovery and delivery. The use of mass spectrometry (MS) allows for broad analysis of lipids from different classes; however, their release from the higher order structural aggregates is typically achieved by chemical means. Mechanical disruption by high frequency surface acoustic waves (SAW) is presented as an appealing alternative to preparing lipid vesicles for MS sampling. In this work, SAWs used to disrupt liposomes allow for the direct analysis of their constituent lipids by employing SAW nebulization with corona discharge (CD) ionization. We explore the effects of duration, frequency, and incorporation of nonpolar lipids, including cholesterol, on the SAW’s ability to disrupt the liposome. We also report on the successful MS analysis of liposome-derived lipids along with cytochrome C in solution, thus demonstrating applications to aqueous samples and native MS conditions.
more »
« less
Microfluidic vortex focusing for high throughput synthesis of size-tunable liposomes
Abstract Control over vesicle size during nanoscale liposome synthesis is critical for defining the pharmaceutical properties of liposomal nanomedicines. Microfluidic technologies capable of size-tunable liposome generation have been widely explored, but scaling these microfluidic platforms for high production throughput without sacrificing size control has proven challenging. Here we describe a microfluidic-enabled process in which highly vortical flow is established around an axisymmetric stream of solvated lipids, simultaneously focusing the lipids while inducing rapid convective and diffusive mixing through application of the vortical flow field. By adjusting the individual buffer and lipid flow rates within the system, the microfluidic vortex focusing technique is capable of generating liposomes with precisely controlled size and low size variance, and may be operated up to the laminar flow limit for high throughput vesicle production. The reliable formation of liposomes as small as 27 nm and mass production rates over 20 g/h is demonstrated, offering a path toward production-scale liposome synthesis using a single continuous-flow vortex focusing device.
more »
« less
- Award ID(s):
- 1950234
- PAR ID:
- 10380497
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Peptides that form nanoscale pores in lipid bilayers have potential applications in triggered release, but only if their selectivity for target synthetic membranes over bystander biomembranes can be optimized. Previously, we identified a novel family of α-helical pore-forming peptides called “macrolittins”, which release macromolecular cargoes from phosphatidylcholine (PC) liposomes at concentrations as low as 1 peptide per 1000 lipids. In this work, we show that macrolittins have no measurable cytolytic activity against multiple human cell types even at high peptide concentration. This unprecedented selectivity for PC liposomes over cell plasma membranes is explained, in part, by the sensitivity of macrolittin activity to physical chemical properties of the bilayer hydrocarbon core. In the presence of cells, macrolittins release all vesicle-entrapped cargoes (proteins and small molecule drugs) which are then readily uptaken by cells. Triggered release occurs without any direct effect of the peptide on the cells, and without vesicle–vesicle or vesicle–cell interactions.more » « less
-
Abstract Liposomes are lipid‐based nanoparticles that have been used to deliver encapsulated drugs for a variety of applications, including treatment of life‐threatening fungal infections. By understanding the effect of composition on liposome interactions with both fungal and mammalian cells, new effective antifungal liposomes can be developed. In this study, we investigated the impact of lipid saturation and cholesterol content on fungal and mammalian cell interactions with liposomes. We used three phospholipids with different saturation levels (saturated hydrogenated soy phosphatidylcholine (HSPC), mono‐unsaturated 1‐palmitoyl‐2‐oleoyl‐glycero‐3‐phosphocholine (POPC), and di‐unsaturated 1‐palmitoyl‐2‐linoleoyl‐sn‐glycero‐3‐phosphocholine (PLPC)) and cholesterol concentrations ranging from 15% to 40% (w/w) in our liposome formulations. Using flow cytometry, >80% ofCandida albicansSC5314 cells were found to interact with all liposome formulations developed, while >50% of clinical isolates tested exhibited interaction with these liposomes. In contrast, POPC‐containing formulations exhibited low levels of interaction with murine fibroblasts and human umbilical vein endothelial cells (<30%), while HSPC and PLPC formulations had >50% and >80% interaction, respectively. Further, PLPC formulations caused a significant decrease in mammalian cell viability. Formulations that resulted in low levels of mammalian cell interaction, minimal cytotoxicity, and high levels of fungal cell interaction were then used to encapsulate the antifungal drug, amphotericin B. These liposomes eradicated planktonicC. albicansat drug concentrations lower than free drug, potentially due to the high levels of liposome‐C. albicansinteraction. Overall, this study provides new insights into the design of liposome formulations towards the development of new antifungal therapeutics.more » « less
-
Whether reagents and samples need to be combined to achieve a desired reaction, or precise concentrations of solutions need to be mixed and delivered downstream, thorough mixing remains a critical step in many microfluidics-based biological and chemical assays and analyses. To achieve complete mixing of fluids in microfluidic devices, researchers have utilized novel channel designs or active intervention to facilitate mass transport and exchange of fluids. However, many of these solutions have a major limitation: their design inherently limits their operational throughput; that is, different designs work at specific flow rates, whether that be low or high ranges, but have difficulties outside of their tailored design regimes. In this work, we present an acoustofluidic mixer that is capable of achieving efficient, thorough mixing across a broad range of flow rates (20–2000 μL min −1 ) using a single device. Our mixer combines active acoustofluidic mixing, which is responsible for mixing fluids at lower flow rates, with passive hydrodynamic mixing, which accounts for mixing fluids at higher flow rates. The mechanism, functionality, and performance of our acoustofluidic device are both numerically and experimentally validated. Additionally, the real-world potential of our device is demonstrated by synthesizing polymeric nanoparticles with comparable sizes over a two-order-of-magnitude wide range of flow rates. This device can be valuable in many biochemical, biological, and biomedical applications. For example, using our platform, one may synthesize nanoparticles/nanomaterials at lower flow rates to first identify optimal synthesis conditions without having to waste significant amounts of reagents, and then increase the flow rate to perform high-throughput synthesis using the optimal conditions, all using the same single device and maintaining performance.more » « less
-
Abstract Porous noble metal nanoparticles have received particular attention recently for their unique optical, thermal, and catalytic functions in biomedicine. However, limited progress has been made to synthesize such porous metallic nanostructures with large mesopores (≥25 nm). Here, a green yet facile synthesis strategy using biocompatible liposomes as templates to mediate the formation of mesoporous metallic nanostructures in a controllable fashion is reported. Various monodispersed nanostructures with well‐defined mesoporous shape and large mesopores (≈ 40 nm) are successfully synthesized from mono‐ (Au, Pd, and Pt), bi‐ (AuPd, AuPt, AuRh, PtRh, and PdPt), and tri‐noble metals (AuPdRh, AuPtRh, and AuPdPt). Along with a successful demonstration of its effectiveness in synthesis of various mesoporous nanostructures, the possible mechanism of liposome‐guided formation of such nanostructures via time sectioning of the synthesis process (monitoring time‐resolved growth of mesoporous structures) and computational quantum molecular modeling (analyzing chemical interaction energy between metallic cations and liposomes at the enthalpy level) is also revealed. These mesoporous metallic nanostructures exhibit a strong photothermal effect in the near‐infrared region, effective catalytic activities in hydrogen peroxide decomposition reaction, and high drug loading capacity. Thus, the liposome‐templated method provides an inspiring and robust avenue to synthesize mesoporous noble metal‐based nanostructures for versatile biomedical applications.more » « less
An official website of the United States government
