skip to main content


This content will become publicly available on January 1, 2025

Title: Broad-scale ecological niches of pathogens vectored by the ticks Ixodes scapularis and Amblyomma americanum in North America

Environmental dimensions, such as temperature, precipitation, humidity, and vegetation type, influence the activity, survival, and geographic distribution of tick species. Ticks are vectors of various pathogens that cause disease in humans, andIxodes scapularisandAmblyomma americanumare among the tick species that transmit pathogens to humans across the central and eastern United States. Although their potential geographic distributions have been assessed broadlyviaecological niche modeling, no comprehensive study has compared ecological niche signals between ticks and tick-borne pathogens. We took advantage of National Ecological Observatory Network (NEON) data for these two tick species and associated bacteria pathogens across North America. We used two novel statistical tests that consider sampling and absence data explicitly to perform these explorations: a univariate analysis based on randomization and resampling, and a permutational multivariate analysis of variance. Based on univariate analyses, inAmblyomma americanum, three pathogens(Borrelia lonestari,Ehrlichia chaffeensis, andE. ewingii) were tested; pathogens showed nonrandom distribution in at least one environmental dimension. Based on the PERMANOVA test, the null hypothesis that the environmental position and variation of pathogen-positive samples are equivalent to those ofA. americanumcould not be rejected for any of the pathogens, except for the pathogenE. ewingiiin maximum and minimum vapor pressure and minimum temperature. ForIxodes scapularis,six pathogens (A. phagocytophilum,Babesia microti,Borrelia burgdorferisensu lato,B. mayonii,B. miyamotoi, andEhrlichia muris-like) were tested; onlyB. miyamotoiwas not distinct from null expectations in all environmental dimensions, based on univariate tests. In the PERMANOVA analyses, the pathogens departed from null expectations forB. microtiandB. burgdorferisensu lato, with smaller niches inB. microti, and larger niches inB. burgdorferisensu lato, than the vector. More generally, this study shows the value of large-scale data resources with consistent sampling methods, and known absences of key pathogens in particular samples, for answering public health questions, such as the relationship of presence and absence of pathogens in their hosts respect to environmental conditions.

 
more » « less
Award ID(s):
1920946
NSF-PAR ID:
10536310
Author(s) / Creator(s):
; ;
Publisher / Repository:
PeerJ, Inc.
Date Published:
Journal Name:
PeerJ
Volume:
12
ISSN:
2167-8359
Page Range / eLocation ID:
e17944
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The blacklegged tick (Ixodes scapularis(Journal of the Academy of Natural Sciences of Philadelphia, 1821,2, 59)) is a vector ofBorrelia burgdorferisensu stricto (s.s.) (International Journal of Systematic Bacteriology, 1984,34, 496), the causative bacterial agent of Lyme disease, part of a slow‐moving epidemic of Lyme borreliosis spreading across the northern hemisphere. Well‐known geographical differences in the vectorial capacity of these ticks are associated with genetic variation. Despite the need for detailed genetic information in this disease system, previous phylogeographical studies of these ticks have been restricted to relatively few populations or few genetic loci. Here we present the most comprehensive phylogeographical study of genome‐wide markers inI. scapularis, conducted by using 3RAD (triple‐enzyme restriction‐site associated sequencing) and surveying 353 ticks from 33 counties throughout the species' range. We found limited genetic variation among populations from the Northeast and Upper Midwest, where Lyme disease is most common, and higher genetic variation among populations from the South. We identify five spatially associated genetic clusters ofI. scapularis. In regions where Lyme disease is increasing in frequency, theI. scapularispopulations genetically group with ticks from historically highly Lyme‐endemic regions. Finally, we identify 10 variable DNA sites that contribute the most to population differentiation. These variable sites cluster on one of the chromosome‐scale scaffolds forI. scapularisand are within identified genes. Our findings illuminate the need for additional research to identify loci causing variation in the vectorial capacity ofI. scapularisand where additional tick sampling would be most valuable to further understand disease trends caused by pathogens transmitted byI. scapularis.

     
    more » « less
  2. Abstract

    Emerging and re‐emerging pathogens often stem from zoonotic origins, cycling between humans and animals, and are frequently vectored and maintained by hematophagous arthropod vectors. The efficiency by which these disease agents are successfully transmitted between vertebrate hosts is influenced by many factors, including the host on which a vector feeds. The Lyme disease bacteriumBorrelia burgdorferisensu lato has adapted to survive in complex host environments, vectored byIxodesticks, and maintained in multiple vertebrate hosts. The versatility of Lyme borreliae in disparate host milieus is a compelling platform to investigate mechanisms dictating pathogen transmission through complex networks of vertebrates and ticks. Squamata, one of the most diverse clade of extant reptiles, is comprised primarily of lizards, many of which are readily fed upon byIxodesticks. Yet, lizards are one of the least studied taxa at risk of contributing to the transmission and life cycle maintenance of Lyme borreliae. In this review, we summarize the current evidence, spanning from field surveillance to laboratory infection studies, supporting their contributions to Lyme borreliae circulation. We also summarize the current understanding of divergent lizard immune responses that may explain the underlying molecular mechanisms to confer Lyme spirochete survival in vertebrate hosts. This review offers a critical perspective on potential enzootic cycles existing between lizard‐tick‐Borreliainteractions and highlights the importance of an eco‐immunology lens for zoonotic pathogen transmission studies.

     
    more » « less
  3. Globally, zoonotic vector-borne diseases are on the rise and understanding their complex transmission cycles is pertinent to mitigating disease risk. In North America, Lyme disease is the most commonly reported vector-borne disease and is caused by transmission of Borrelia burgdorferi sensu lato (s.l.) from Ixodes spp. ticks to a diverse group of vertebrate hosts. Small mammal reservoir hosts are primarily responsible for maintenance of B. burgdorferi s.l. across the United States. Never- theless, birds can also be parasitized by ticks and are capable of infection with B. burgdorferi s.l. but their role in B. burgdorferi s.l. transmission dynamics is understudied. Birds could be important in both the maintenance and spread of B. burgdorferi s.l. and ticks because of their high mobility and shared habitat with important mammalian reservoir hosts. This study aims to better understand the role of avian hosts in tick-borne zoonotic disease transmission cycles in the western United States. We surveyed birds, mammals, and ticks at nine sites in northern California for B. burgdorferi s.l. infection and collected data on other metrics of host community composition such as abundance and diversity of birds, small mammals, lizards, predators, and ticks. We found 22.8% of birds infected with B. burgdorferi s.l. and that the likelihood of avian B. burgdorferi s.l. infection was significantly associated with local host community composition and pathogen prevalence in California. Addition- ally, we found an average tick burden of 0.22 ticks per bird across all species. Predator and lizard abundances were significant predictors of avian tick infestation. These results indicate that birds are relevant hosts in the local B. burgdorferi s.l. transmission cycle in the western United States and quantifying their role in the spread and maintenance of Lyme disease requires further research. 
    more » « less
  4. Stevenson, Brian (Ed.)
    Ticks are the most important vectors of zoonotic disease-causing pathogens in North America and Europe. Many tick species are expanding their geographic range. Although correlational evidence suggests that climate change is driving the range expansion of ticks, experimental evidence is necessary to develop a mechanistic understanding of ticks’ response to a range of climatic conditions. Previous experiments used simulated microclimates, but these protocols require hazardous salts or expensive laboratory equipment to manipulate humidity. We developed a novel, safe, stable, convenient, and economical method to isolate individual ticks and manipulate their microclimates. The protocol involves placing individual ticks in plastic tubes, and placing six tubes along with a commercial two-way humidity control pack in an airtight container. We successfully used this method to investigate how humidity affects survival and host-seeking (questing) behavior of three tick species: the lone star tick ( Amblyomma americanum ), American dog tick ( Dermacentor variabilis ), and black-legged tick ( Ixodes scapularis ). We placed 72 adult females of each species individually into plastic tubes and separated them into three experimental relative humidity (RH) treatments representing distinct climates: 32% RH, 58% RH, and 84% RH. We assessed the survival and questing behavior of each tick for 30 days. In all three species, survivorship significantly declined in drier conditions. Questing height was negatively associated with RH in Amblyomma , positively associated with RH in Dermacentor , and not associated with RH in Ixodes . The frequency of questing behavior increased significantly with drier conditions for Dermacentor but not for Amblyomma or Ixodes . This report demonstrates an effective method for assessing the viability and host-seeking behavior of tick vectors of zoonotic diseases under different climatic conditions. 
    more » « less
  5. Becker, Daniel (Ed.)

    The states of Kansas and Oklahoma, in the central Great Plains, lie at the western periphery of the geographic distributions of several tick species. As the focus of most research on ticks and tick-borne diseases has been on Lyme disease which commonly occurs in areas to the north and east, the ticks of this region have seen little research attention. Here, we report on the phenology and activity patterns shown by tick species observed at 10 sites across the two states and explore factors associated with abundance of all and life specific individuals of the dominant species. Ticks were collected in 2020–2022 using dragging, flagging and carbon-dioxide trapping techniques, designed to detect questing ticks. The dominant species wasA.americanum(24098, 97%) followed byDermacentor variabilis(370, 2%),D.albipictus(271, 1%),Ixodes scapularis(91, <1%)and A.maculatum(38, <1%).Amblyomma americanum,A.maculatum and D.variabiliswere active in Spring and Summer, whileD.albipictus and I.scapulariswere active in Fall and Winter. Factors associated with numbers of individuals ofA.americanumincluded day of year, habitat, and latitude. Similar associations were observed when abundance was examined by life-stage. Overall, the picture is one of broadly distributed tick species that shows seasonal limitations in the timing of their questing activity.

     
    more » « less