skip to main content


Title: Diel variations in the estimated refractive index of bulk oceanic particles

The index of refraction (n) of particles is an important parameter in optical models that aims to extract particle size and carbon concentrations from light scattering measurements. An inadequate choice ofncan critically affect the characterization and interpretation of optically-derived parameters, including those from satellite-based models which provide the current view of how biogeochemical processes vary over the global ocean. Yet, little is known about hownvaries over time and space to inform such models. Particularly, in situ estimates ofnfor bulk water samples and at diel-resolving time scales are rare. Here, we demonstrate a method to estimatenusing simultaneously and independently collected particulate beam attenuation coefficients, particle size distribution data, and a Mie theory model. We apply this method to surface waters of the North Pacific Subtropical Gyre (NPSG) at hourly resolution. Clear diel cycles innwere observed, marked by minima around local sunrise and maxima around sunset, qualitatively consistent with several laboratory-based estimates ofnfor specific phytoplankton species. A sensitivity analysis showed that the daily oscillation innamplitude was somewhat insensitive to broad variations in method assumptions, ranging from 11.3 ± 4.3% to 16.9 ± 2.9%. Such estimates are crucial for improvement of algorithms that extract the particle size and production from bulk optical measurements, and could potentially help establish a link betweennvariations and changes in cellular composition of in situ particles.

 
more » « less
Award ID(s):
1756517
NSF-PAR ID:
10380712
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
30
Issue:
24
ISSN:
1094-4087; OPEXFF
Page Range / eLocation ID:
Article No. 44141
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cross-platform observing systems are requisite to capturing the temporal and spatial dynamics of particles in the ocean. We present simultaneous observations of bulk optical properties, including the particulate beam attenuation (cp) and backscattering (bbp) coefficients, and particle size distributions collected in the North Pacific Subtropical Gyre. Clear and coherent diel cycles are observed in all bulk and size-fractionated optical proxies for particle biomass. We show evidence linking diurnal increases incpandbbpto daytime particle growth and division of cells, with particles<<#comment/>7µ<#comment/>mdriving the daily cycle of particle production and loss within the mixed layer. Flow cytometry data reveal the nitrogen-fixing cyanobacteriumCrocosphaera(∼<#comment/>4−<#comment/>7µ<#comment/>m) to be an important driver ofcpat the time of sampling, whereasProchlorococcusdynamics (∼<#comment/>0.5µ<#comment/>m) were essential to reproducing temporal variability inbbp. This study is a step towards improved characterization of the particle size range represented byin situbulk optical properties and a better understanding of the mechanisms that drive variability in particle production in the oligotrophic open ocean.

     
    more » « less
  2. Abstract

    This study derives simple analytical expressions for the theoretical height profiles of particle number concentrations (Nt) and mean volume diameters (Dm) during the steady-state balance of vapor growth and collision–coalescence with sedimentation. These equations are general for both rain and snow gamma size distributions with size-dependent power-law functions that dictate particle fall speeds and masses. For collision–coalescence only,Nt(Dm) decreases (increases) as an exponential function of the radar reflectivity difference between two height layers. For vapor deposition only,Dmincreases as a generalized power law of this reflectivity difference. Simultaneous vapor deposition and collision–coalescence under steady-state conditions with conservation of number, mass, and reflectivity fluxes lead to a coupled set of first-order, nonlinear ordinary differential equations forNtandDm. The solutions to these coupled equations are generalized power-law functions of heightzforDm(z) andNt(z) whereby each variable is related to one another with an exponent that is independent of collision–coalescence efficiency. Compared to observed profiles derived from descending in situ aircraft Lagrangian spiral profiles from the CRYSTAL-FACE field campaign, these analytical solutions can on average capture the height profiles ofNtandDmwithin 8% and 4% of observations, respectively. Steady-state model projections of radar retrievals aloft are shown to produce the correct rapid enhancement of surface snowfall compared to the lowest-available radar retrievals from 500 m MSL. Future studies can utilize these equations alongside radar measurements to estimateNtandDmbelow radar tilt elevations and to estimate uncertain microphysical parameters such as collision–coalescence efficiencies.

    Significance Statement

    While complex numerical models are often used to describe weather phenomenon, sometimes simple equations can instead provide equally good or comparable results. Thus, these simple equations can be used in place of more complicated models in certain situations and this replacement can allow for computationally efficient and elegant solutions. This study derives such simple equations in terms of exponential and power-law mathematical functions that describe how the average size and total number of snow or rain particles change at different atmospheric height levels due to growth from the vapor phase and aggregation (the sticking together) of these particles balanced with their fallout from clouds. We catalog these mathematical equations for different assumptions of particle characteristics and we then test these equations using spirally descending aircraft observations and ground-based measurements. Overall, we show that these mathematical equations, despite their simplicity, are capable of accurately describing the magnitude and shape of observed height and time series profiles of particle sizes and numbers. These equations can be used by researchers and forecasters along with radar measurements to improve the understanding of precipitation and the estimation of its properties.

     
    more » « less
  3. Abstract

    Models and observations suggest that particle flux attenuation is lower across the mesopelagic zone of anoxic environments compared to oxic environments. Flux attenuation is controlled by microbial metabolism as well as aggregation and disaggregation by zooplankton, all of which shape the relative abundance of differently sized particles. Observing and modeling particle spectra can provide information about the contributions of these processes. We measured particle size spectrum profiles at one station in the oligotrophic Eastern Tropical North Pacific Oxygen Deficient Zone (ETNP ODZ) using an underwater vision profiler (UVP), a high‐resolution camera that counts and sizes particles. Measurements were taken at different times of day, over the course of a week. Comparing these data to particle flux measurements from sediment traps collected over the same time‐period allowed us to constrain the particle size to flux relationship, and to generate highly resolved depth and time estimates of particle flux rates. We found that particle flux attenuated very little throughout the anoxic water column, and at some time points appeared to increase. Comparing our observations to model predictions suggested that particles of all sizes remineralize more slowly in the ODZ than in oxic waters, and that large particles disaggregate into smaller particles, primarily between the base of the photic zone and 500 m. Acoustic measurements of multiple size classes of organisms suggested that many organisms migrated, during the day, to the region with high particle disaggregation. Our data suggest that diel‐migrating organisms both actively transport biomass and disaggregate particles in the ODZ core.

     
    more » « less
  4. Abstract

    Underwater digital in‐line holography can provide high‐resolution, in situ imagery of marine particles and offers many advantages over alternative measurement approaches. However, processing of holograms requires computationally expensive reconstruction and processing, and computational cost increases with the size of the imaging volume. In this work, a processing pipeline is developed to extract targets from holograms where target distribution is relatively sparse without reconstruction of the full hologram. This is motivated by the desire to efficiently extract quantitative estimates of plankton abundance from a data set (>300,000 holograms) collected in the Northwest Atlantic using a large‐volume holographic camera. First, holograms with detectable targets are selected using a transfer learning approach. This was critical as a subset of the holograms were impacted by optical turbulence, which obscured target detection. Then, target diffraction patterns are detected in the hologram. Finally, targets are reconstructed and focused using only a small region of the hologram around the detected diffraction pattern. A search algorithm is employed to select distances for reconstruction, reducing the number of reconstructions required for 1 mm focus precision from 1000 to 31. When compared with full reconstruction techniques, this method detects 99% of particles larger than 0.1 mm2, a size class which includes most copepods and larger particles of marine snow, and 85% of those targets are sufficiently focused for classification. This approach requires 1% of the processing time required to compute full reconstructions, making processing of long time‐series, large imaging volume holographic data sets feasible.

     
    more » « less
  5. Abstract

    Holographic microscopy has emerged as a tool for in situ imaging of microscopic organisms and other particles in the marine environment: appealing because of the relatively larger sampling volume and simpler optical configuration compared to other imaging systems. However, its quantitative capabilities have so far remained uncertain, in part because hologram reconstruction and image recognition have required manual operation. Here, we assess the quantitative skill of our automated hologram processing pipeline (CCV Pipeline), to evaluate the size and concentration measurements of environmental and cultured assemblages of marine plankton particles, and microspheres. Over 1 million particles, ranging from 10 to 200 μm in equivalent spherical diameter, imaged by the 4‐Deep HoloSea digital inline holographic microscope (DIHM) are analyzed. These measurements were collected in parallel with a FlowCam (FC), Imaging FlowCytobot (IFCB), and manual microscope identification. Once corrections for particle location and nonuniform illumination were developed and applied, the DIHM showed an underestimate in ESD of about 3% to 10%, but successfully reproduced the size spectral slope from environmental samples, and the size distribution of cultures (Dunaliella tertiolecta,Heterosigma akashiwo, andProrocentrum micans) and microspheres. DIHM concentrations (order 1 to 1000 particles ml−1) showed a linear agreement (r2= 0.73) with the other instruments, but individual comparisons at times had large uncertainty. Overall, we found the DIHM and the CCV Pipeline required extensive manual correction, but once corrected, provided concentration and size estimates comparable to the other imaging systems assessed in this study. Holographic cameras are mechanically simple, autonomous, can operate at very high pressures, and provide a larger sampling volume than comparable lens‐based tools. Thus, we anticipate that these characterization efforts will be rewarded with novel discovery in new oceanic environments.

     
    more » « less