skip to main content


Title: Breeding crops for drought-affected environments and improved climate resilience
Abstract

Breeding climate-resilient crops with improved levels of abiotic and biotic stress resistance as a response to climate change presents both opportunities and challenges. Applying the framework of the “breeder’s equation,” which is used to predict the response to selection for a breeding program cycle, we review methodologies and strategies that have been used to successfully breed crops with improved levels of drought resistance, where the target population of environments (TPEs) is a spatially and temporally heterogeneous mixture of drought-affected and favorable (water-sufficient) environments. Long-term improvement of temperate maize for the US corn belt is used as a case study and compared with progress for other crops and geographies. Integration of trait information across scales, from genomes to ecosystems, is needed to accurately predict yield outcomes for genotypes within the current and future TPEs. This will require transdisciplinary teams to explore, identify, and exploit novel opportunities to accelerate breeding program outcomes; both improved germplasm resources and improved products (cultivars, hybrids, clones, and populations) that outperform and replace the products in use by farmers, in combination with modified agronomic management strategies suited to their local environments.

 
more » « less
NSF-PAR ID:
10380793
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
The Plant Cell
ISSN:
1040-4651
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Accurately predicting responses to selection is a major goal in biology and important for successful crop breeding in changing environments. However, evolutionary responses to selection can be constrained by such factors as genetic and cross‐environment correlations, linkage, and pleiotropy, and our understanding of the extent and impact of such constraints is still developing. Here, we conducted a field experiment to investigate potential constraints to selection for drought resistance in rice (Oryza sativa) using phenotypic selection analysis and quantitative genetics. We found that traits related to drought response were heritable, and some were under selection, including selection for earlier flowering, which could allow drought escape. However, patterns of selection generally were not opposite under wet and dry conditions, and we did not find individual or closely linked genes that influenced multiple traits, indicating a lack of evidence that antagonistic pleiotropy, linkage, or cross‐environment correlations would constrain selection for drought resistance. In most cases, genetic correlations had little influence on responses to selection, with direct and indirect selection largely congruent. The exception to this was seed mass under drought, which was predicted to evolve in the opposite direction of direct selection due to correlations. Because of this indirect effect on selection on seed mass, selection for drought resistance was not accompanied by a decrease in seed mass, and yield increased with fecundity. Furthermore, breeding lines with high fitness and yield under drought also had high fitness and yield under wet conditions, indicating that there was no evidence for a yield penalty on drought resistance. We found multiple genes in which expression influenced both water use efficiency (WUE) and days to first flowering, supporting a genetic basis for the trade‐off between drought escape and avoidance strategies. Together, these results can provide helpful guidance for understanding and managing evolutionary constraints and breeding stress‐resistant crops.

     
    more » « less
  2. Abstract

    We review approaches to maize breeding for improved drought tolerance during flowering and grain filling in the central and western US corn belt and place our findings in the context of results from public breeding. Here we show that after two decades of dedicated breeding efforts, the rate of crop improvement under drought increased from 6.2 g m−2 year−1 to 7.5 g m−2 year−1, closing the genetic gain gap with respect to the 8.6 g m−2 year–1 observed under water-sufficient conditions. The improvement relative to the long-term genetic gain was possible by harnessing favourable alleles for physiological traits available in the reference population of genotypes. Experimentation in managed stress environments that maximized the genetic correlation with target environments was key for breeders to identify and select for these alleles. We also show that the embedding of physiological understanding within genomic selection methods via crop growth models can hasten genetic gain under drought. We estimate a prediction accuracy differential (Δr) above current prediction approaches of ~30% (Δr=0.11, r=0.38), which increases with increasing complexity of the trait environment system as estimated by Shannon information theory. We propose this framework to inform breeding strategies for drought stress across geographies and crops.

     
    more » « less
  3. Societal Impact Statement Summary

    Plant–mycorrhizal interactions are not typically assessed in crop breeding programs. Our experiment addresses this by determining host‐plant outcomes of newly developed synthetic (agronomic) populations compared with parent lines, following low‐input selective breeding. Assessing the potential of low‐input breeding to enhance crop mycorrhizal benefits is a critical step toward more sustainable agricultural production.

    We compared four synthetic populations ofPanicum virgatum, from a low‐input biofuel breeding program at Oklahoma State University, to corresponding parent lines. Plants were grown in a greenhouse in native prairie soils that were either steam‐pasteurized (nonmycorrhizal) or non‐steamed (mycorrhizal).

    We assessed shoot and root biomass, shoot P concentration and P content, mycorrhizal growth response (MGR), and mycorrhizal phosphorous response (MPR). Importantly, we provide novel evidence that low‐input selective breeding increased mycorrhizal reliance of switchgrass synthetics compared to parent lines, with implications for global agricultural systems.

    There are substantial opportunities for plant traits associated with increased MGR and MPR to be transferred to a wide array of crops. Our findings indicate low‐input selective breeding can improve MGR and MPR. We propose these traits serve as a useful proxy for host‐plant mycorrhizal reliance, facilitating successful hologenome breeding to reduce fertilizer requirements.

     
    more » « less
  4. Abstract

    Drought‐induced tree mortality is expected to increase in future climates with the potential for significant consequences to global carbon, water, and energy cycles. Xylem embolism can accumulate to lethal levels during drought, but species that can refill embolized xylem and recover hydraulic function may be able to avoid mortality. Yet the potential controls of embolism recovery, including cross‐biome patterns and plant traits such as nonstructural carbohydrates (NSCs), hydraulic traits, and nocturnal stomatal conductance, are unknown. We exposed eight plant species, originating from mesic (tropical and temperate) and semi‐arid environments, to drought under ambient and elevated CO2levels, and assessed recovery from embolism following rewatering. We found a positive association between xylem recovery and NSCs, and, surprisingly, a positive relationship between xylem recovery and nocturnal stomatal conductance. Arid‐zone species exhibited greater embolism recovery than mesic zone species. Our results indicate that nighttime stomatal conductance often assumed to be a wasteful use of water, may in fact be a key part of plant drought responses, and contribute to drought survival. Findings suggested distinct biome‐specific responses that partially depended on species climate‐of‐origin precipitation or aridity index, which allowed some species to recover from xylem embolism. These findings provide improved understanding required to predict the response of diverse plant communities to drought. Our results provide a framework for predicting future vegetation shifts in response to climate change.

     
    more » « less
  5. Abstract

    Heat and drought are two emerging climatic threats to theUSmaize and soybean production, yet their impacts on yields are collectively determined by the magnitude of climate change and rising atmosphericCO2concentrations. This study quantifies the combined and separate impacts of high temperature, heat and drought stresses on the current and futureUSrainfed maize and soybean production and for the first time characterizes spatial shifts in the relative importance of individual stress. Crop yields are simulated using the Agricultural Production Systems Simulator (APSIM), driven by high‐resolution (12 km) dynamically downscaled climate projections for 1995–2004 and 2085–2094. Results show that maize and soybean yield losses are prominent in theUSMidwest by the late 21st century under both Representative Concentration Pathway (RCP) 4.5 andRCP8.5 scenarios, and the magnitude of loss highly depends on the current vulnerability and changes in climate extremes. Elevated atmosphericCO2partially but not completely offsets the yield gaps caused by climate extremes, and the effect is greater in soybean than in maize. Our simulations suggest that drought will continue to be the largest threat toUSrainfed maize production underRCP4.5 and soybean production under bothRCPscenarios, whereas high temperature and heat stress take over the dominant stress of drought on maize underRCP8.5. We also reveal that shifts in the geographic distributions of dominant stresses are characterized by the increase in concurrent stresses, especially for theUSMidwest. These findings imply the importance of considering heat and drought stresses simultaneously for future agronomic adaptation and mitigation strategies, particularly for breeding programs and crop management. The modeling framework of partitioning the total effects of climate change into individual stress impacts can be applied to the study of other crops and agriculture systems.

     
    more » « less