skip to main content


Title: Efficiency enhancement of ultrathin CIGS solar cells by optimal bandgap grading. Part II: finite-difference algorithm and double-layer antireflection coatings

In Part I [Appl. Opt.58,6067(2019)APOPAI003-693510.1364/AO.58.006067], we used a coupled optoelectronic model to optimize a thin-filmCuIn1−<#comment/>ξ<#comment/>Gaξ<#comment/>Se2(CIGS) solar cell with a graded-bandgap photon-absorbing layer and a periodically corrugated backreflector. The increase in efficiency due to the periodic corrugation was found to be tiny and that, too, only for very thin CIGS layers. Also, it was predicted that linear bandgap-grading enhances the efficiency of the CIGS solar cells. However, a significant improvement in solar cell efficiency was found using a nonlinearly (sinusoidally) graded-bandgap CIGS photon-absorbing layer. The optoelectronic model comprised two submodels: optical and electrical. The electrical submodel applied the hybridizable discontinuous Galerkin (HDG) scheme directly to equations for the drift and diffusion of charge carriers. As our HDG scheme sometimes fails due to negative carrier densities arising during the solution process, we devised a new, to the best of our knowledge, computational scheme using the finite-difference method, which also reduces the overall computational cost of optimization. An unfortunate normalization error in the electrical submodel in Part I came to light. This normalization error did not change the overall conclusions reported in Part I; however, some specifics did change. The new algorithm for the electrical submodel is reported here along with updated numerical results. We re-optimized the solar cells containing a CIGS photon-absorbing layer with either (i) a homogeneous bandgap, (ii) a linearly graded bandgap, or (iii) a nonlinearly graded bandgap. Considering the meager increase in efficiency with the periodic corrugation and additional complexity in the fabrication process, we opted for a flat backreflector. The new algorithm is significantly faster than the previous algorithm. Our new results confirm efficiency enhancement of 84% (resp. 63%) when the thickness of the CIGS layer is 600 nm (resp. 2200 nm), similarly to Part I. A hundredfold concentration of sunlight can increase the efficiency by an additional 27%. Finally, the currently used 110-nm-thick layer ofMgF2performs almost as well as optimal single- and double-layer antireflection coatings.

 
more » « less
Award ID(s):
2011603
NSF-PAR ID:
10380864
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Applied Optics
Volume:
61
Issue:
33
ISSN:
1559-128X; APOPAI
Page Range / eLocation ID:
Article No. 10049
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An optoelectronic optimization was carried out for anAlξ<#comment/>Ga1−<#comment/>ξ<#comment/>As(AlGaAs) solar cell containing (i) ann-AlGaAs absorber layer with a graded bandgap and (ii) a periodically corrugated Ag backreflector combined with localized ohmic Pd–Ge–Au backcontacts. The bandgap of the absorber layer was varied either sinusoidally or linearly. An efficiency of 33.1% with the 2000-nm-thickn-AlGaAs absorber layer is predicted with linearly graded bandgap along with silver backreflector and localized ohmic backcontacts, in comparison to 27.4% efficiency obtained with homogeneous bandgap and a continuous ohmic backcontact. Sinusoidal grading of the bandgap is predicted to enhance the maximum efficiency to 34.5%. Thus, grading the bandgap of the absorber layer, along with a periodically corrugated Ag backreflector and localized ohmic Pd-Ge-Au backcontacts, can help realize ultrathin and high-efficient AlGaAs solar cells for terrestrial applications.

     
    more » « less
  2. We experimentally demonstrate the utilization of adaptive optics (AO) to mitigate intra-group power coupling among linearly polarized (LP) modes in a graded-index few-mode fiber (GI FMF). Generally, in this fiber, the coupling between degenerate modes inside a modal group tends to be stronger than between modes belonging to different groups. In our approach, the coupling inside theLP11group can be represented by a combination of orbital-angular-momentum (OAM) modes, such that reducing power coupling in OAM set tends to indicate the capability to reduce the coupling inside theLP11group. We employ two output OAM modesl=+1andl=−<#comment/>1as resultant linear combinations of degenerateLP11aandLP11bmodes inside theLP11group of a∼<#comment/>0.6-kmGI FMF. The power coupling is mitigated by shaping the amplitude and phase of the distorted OAM modes. Each OAM mode carries an independent 20-, 40-, or 100-Gbit/s quadrature-phase-shift-keying data stream. We measure the transmission matrix (TM) in the OAM basis withinLP11group, which is a subset of the full LP TM of the FMF-based system. An inverse TM is subsequently implemented before the receiver by a spatial light modulator to mitigate the intra-modal-group power coupling. With AO mitigation, the experimental results forl=+1andl=−<#comment/>1modes show, respectively, that (i) intra-modal-group crosstalk is reduced by><#comment/>5.8dBand><#comment/>5.6dBand (ii) near-error-free bit-error-rate performance is achieved with a penalty of∼<#comment/>0.6dBand∼<#comment/>3.8dB, respectively.

     
    more » « less
  3. In this Letter, the electron-blocking-layer (EBL)-free AlGaN ultraviolet (UV) light-emitting diodes (LEDs) using a strip-in-a-barrier structure have been proposed. The quantum barrier (QB) structures are systematically engineered by integrating a 1 nm intrinsicAlxGa(1−<#comment/>x)Nstrip into the middle of QBs. The resulted structures exhibit significantly reduced electron leakage and improved hole injection into the active region, thus generating higher carrier radiative recombination. Our study shows that the proposed structure improves radiative recombination by∼<#comment/>220%<#comment/>, reduces electron leakage by∼<#comment/>11times, and enhances optical power by∼<#comment/>225%<#comment/>at 60 mA current injection compared to a conventional AlGaN EBL LED structure. Moreover, the EBL-free strip-in-a-barrier UV LED records the maximum internal quantum efficiency (IQE) of∼<#comment/>61.5%<#comment/>which is∼<#comment/>72%<#comment/>higher, and IQE droop is∼<#comment/>12.4%<#comment/>, which is∼<#comment/>333%<#comment/>less compared to the conventional AlGaN EBL LED structure at∼<#comment/>284.5nmwavelength. Hence, the proposed EBL-free AlGaN LED is the potential solution to enhance the optical power and produce highly efficient UV emitters.

     
    more » « less
  4. Electro-optic (EO) modulators rely on the interaction of optical and electrical signals with second-order nonlinear media. For the optical signal, this interaction can be strongly enhanced using dielectric slot–waveguide structures that exploit a field discontinuity at the interface between a high-index waveguide core and the low-index EO cladding. In contrast to this, the electrical signal is usually applied through conductive regions in the direct vicinity of the optical waveguide. To avoid excessive optical loss, the conductivity of these regions is maintained at a moderate level, thus leading to inherentRClimitations of the modulation bandwidth. In this paper, we show that these limitations can be overcome by extending the slot–waveguide concept to the modulating radio-frequency (RF) signal. Our device combines an RF slotline that relies onBaTiO3as a high-k dielectric material with a conventional silicon photonic slot waveguide and a highly efficient organic EO cladding material. In a proof-of-concept experiment, we demonstrate a 1 mm long Mach–Zehnder modulator that offers a 3 dB bandwidth of 76 GHz and a 6 dB bandwidth of 110 GHz along with a smallπ<#comment/>voltage of 1.3 V (Uπ<#comment/>L=1.3Vmm). We further demonstrate the viability of the device in a data-transmission experiment using four-state pulse-amplitude modulation (PAM4) at line rates up to 200 Gbit/s. Our first-generation devices leave vast room for further improvement and may open an attractive route towards highly efficient silicon photonic modulators that combine sub-1 mm device lengths with sub-1 V drive voltages and modulation bandwidths of more than 100 GHz.

     
    more » « less
  5. The mid-IR spectroscopic properties ofEr3+doped low-phononCsCdCl3andCsPbCl3crystals grown by the Bridgman technique have been investigated. Using optical excitations at∼<#comment/>800nmand∼<#comment/>660nm, both crystals exhibited IR emissions at∼<#comment/>1.55,∼<#comment/>2.75,∼<#comment/>3.5, and∼<#comment/>4.5µ<#comment/>mat room temperature. The mid-IR emission at 4.5 µm, originating from the4I9/2→<#comment/>4I11/2transition, showed a long emission lifetime of∼<#comment/>11.6msforEr3+dopedCsCdCl3, whereasEr3+dopedCsPbCl3exhibited a shorter lifetime of∼<#comment/>1.8ms. The measured emission lifetimes of the4I9/2state were nearly independent of the temperature, indicating a negligibly small nonradiative decay rate through multiphonon relaxation, as predicted by the energy-gap law for low-maximum-phonon energy hosts. The room temperature stimulated emission cross sections for the4I9/2→<#comment/>4I11/2transition inEr3+dopedCsCdCl3andCsPbCl3were determined to be∼<#comment/>0.14×<#comment/>10−<#comment/>20cm2and∼<#comment/>0.41×<#comment/>10−<#comment/>20cm2, respectively. The results of Judd–Ofelt analysis are presented and discussed.

     
    more » « less