skip to main content


Title: ThreeDWorld: A platform for interactive multi-modal physical simulation
We introduce ThreeDWorld (TDW), a platform for interactive multi-modal physical simulation. TDW enables the simulation of high-fidelity sensory data and physical interactions between mobile agents and objects in rich 3D environments. Unique properties include: real-time near-photo-realistic image rendering; a library of objects and environments, and routines for their customization; generative procedures for efficiently building classes of new environments; high-fidelity audio rendering; realistic physical interactions for a variety of material types, including cloths, liquid, and deformable objects; customizable avatars that embody AI agents; and support for human interactions with VR devices. TDW's API enables multiple agents to interact within a simulation and returns a range of sensor and physics data representing the state of the world. We present initial experiments enabled by TDW in emerging research directions in computer vision, machine learning, and cognitive science, including multi-modal physical scene understanding, physical dynamics predictions, multi-agent interactions, models that 'learn like a child', and attention studies in humans and neural networks.  more » « less
Award ID(s):
1921501
NSF-PAR ID:
10380893
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Date Published:
Journal Name:
Advances in Neural Information Processing Systems (NeurIPS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce ThreeDWorld (TDW), a platform for interactive multi-modal physical simulation. TDW enables simulation of high-fidelity sensory data and physical interactions between mobile agents and objects in rich 3D environments. Unique properties include: real-time near-photo-realistic image rendering; a library of objects and environments, and routines for their customization; generative procedures for efficiently building classes of new environments; high-fidelity audio rendering; realistic physical interactions for a variety of material types, including cloths, liquid, and deformable objects; customizable agents that embody AI agents; and support for human interactions with VR devices. TDW's API enables multiple agents to interact within a simulation and returns a range of sensor and physics data representing the state of the world. We present initial experiments enabled by TDW in emerging research directions in computer vision, machine learning, and cognitive science, including multi-modal physical scene understanding, physical dynamics predictions, multi-agent interactions, models that learn like a child, and attention studies in humans and neural networks. 
    more » « less
  2. An accurate understanding of omnidirectional environment lighting is crucial for high-quality virtual object rendering in mobile augmented reality (AR). In particular, to support reflective rendering, existing methods have leveraged deep learning models to estimate or have used physical light probes to capture physical lighting, typically represented in the form of an environment map. However, these methods often fail to provide visually coherent details or require additional setups. For example, the commercial framework ARKit uses a convolutional neural network that can generate realistic environment maps; however the corresponding reflective rendering might not match the physical environments. In this work, we present the design and implementation of a lighting reconstruction framework called LITAR that enables realistic and visually-coherent rendering. LITAR addresses several challenges of supporting lighting information for mobile AR. First, to address the spatial variance problem, LITAR uses two-field lighting reconstruction to divide the lighting reconstruction task into the spatial variance-aware near-field reconstruction and the directional-aware far-field reconstruction. The corresponding environment map allows reflective rendering with correct color tones. Second, LITAR uses two noise-tolerant data capturing policies to ensure data quality, namely guided bootstrapped movement and motion-based automatic capturing. Third, to handle the mismatch between the mobile computation capability and the high computation requirement of lighting reconstruction, LITAR employs two novel real-time environment map rendering techniques called multi-resolution projection and anchor extrapolation. These two techniques effectively remove the need of time-consuming mesh reconstruction while maintaining visual quality. Lastly, LITAR provides several knobs to facilitate mobile AR application developers making quality and performance trade-offs in lighting reconstruction. We evaluated the performance of LITAR using a small-scale testbed experiment and a controlled simulation. Our testbed-based evaluation shows that LITAR achieves more visually coherent rendering effects than ARKit. Our design of multi-resolution projection significantly reduces the time of point cloud projection from about 3 seconds to 14.6 milliseconds. Our simulation shows that LITAR, on average, achieves up to 44.1% higher PSNR value than a recent work Xihe on two complex objects with physically-based materials. 
    more » « less
  3. Abstract

    A central challenge in the computational modeling and simulation of a multitude of science applications is to achieve robust and accurate closures for their coarse-grained representations due to underlying highly nonlinear multiscale interactions. These closure models are common in many nonlinear spatiotemporal systems to account for losses due to reduced order representations, including many transport phenomena in fluids. Previous data-driven closure modeling efforts have mostly focused on supervised learning approaches using high fidelity simulation data. On the other hand, reinforcement learning (RL) is a powerful yet relatively uncharted method in spatiotemporally extended systems. In this study, we put forth a modular dynamic closure modeling and discovery framework to stabilize the Galerkin projection based reduced order models that may arise in many nonlinear spatiotemporal dynamical systems with quadratic nonlinearity. However, a key element in creating a robust RL agent is to introduce a feasible reward function, which can be constituted of any difference metrics between the RL model and high fidelity simulation data. First, we introduce a multi-modal RL to discover mode-dependant closure policies that utilize the high fidelity data in rewarding our RL agent. We then formulate a variational multiscale RL (VMRL) approach to discover closure models without requiring access to the high fidelity data in designing the reward function. Specifically, our chief innovation is to leverage variational multiscale formalism to quantify the difference between modal interactions in Galerkin systems. Our results in simulating the viscous Burgers equation indicate that the proposed VMRL method leads to robust and accurate closure parameterizations, and it may potentially be used to discover scale-aware closure models for complex dynamical systems.

     
    more » « less
  4. Transparent objects are a very challenging problem in computer vision. They are hard to segment or classify due to their lack of precise boundaries, and there is limited data available for training deep neural networks. As such, current solutions for this problem employ rigid synthetic datasets, which lack flexibility and lead to severe performance degradation when deployed on real-world scenarios. In particular, these synthetic datasets omit features such as refraction, dispersion and caustics due to limitations in the rendering pipeline. To address this issue, we present SuperCaustics, a real-time, open-source simulation of transparent objects designed for deep learning applications. SuperCaustics features extensive modules for stochastic environment creation; uses hardware ray-tracing to support caustics, dispersion, and refraction; and enables generating massive datasets with multi-modal, pixel-perfect ground truth annotations. To validate our proposed system, we trained a deep neural network from scratch to segment transparent objects in difficult lighting scenarios. Our neural network achieved performance comparable to the state-of-the-art on a real-world dataset using only 10% of the training data and in a fraction of the training time. Further experiments show that a model trained with SuperCaustics can segment different types of caustics, even in images with multiple overlapping transparent objects. To the best of our knowledge, this is the first such result for a model trained on synthetic data. Both our open-source code and experimental data are freely available online. 
    more » « less
  5. Gonzalez, D. (Ed.)

    Today’s research on human-robot teaming requires the ability to test artificial intelligence (AI) algorithms for perception and decision-making in complex real-world environments. Field experiments, also referred to as experiments “in the wild,” do not provide the level of detailed ground truth necessary for thorough performance comparisons and validation. Experiments on pre-recorded real-world data sets are also significantly limited in their usefulness because they do not allow researchers to test the effectiveness of active robot perception and control or decision strategies in the loop. Additionally, research on large human-robot teams requires tests and experiments that are too costly even for the industry and may result in considerable time losses when experiments go awry. The novel Real-Time Human Autonomous Systems Collaborations (RealTHASC) facility at Cornell University interfaces real and virtual robots and humans with photorealistic simulated environments by implementing new concepts for the seamless integration of wearable sensors, motion capture, physics-based simulations, robot hardware and virtual reality (VR). The result is an extended reality (XR) testbed by which real robots and humans in the laboratory are able to experience virtual worlds, inclusive of virtual agents, through real-time visual feedback and interaction. VR body tracking by DeepMotion is employed in conjunction with the OptiTrack motion capture system to transfer every human subject and robot in the real physical laboratory space into a synthetic virtual environment, thereby constructing corresponding human/robot avatars that not only mimic the behaviors of the real agents but also experience the virtual world through virtual sensors and transmit the sensor data back to the real human/robot agent, all in real time. New cross-domain synthetic environments are created in RealTHASC using Unreal Engine™, bridging the simulation-to-reality gap and allowing for the inclusion of underwater/ground/aerial autonomous vehicles, each equipped with a multi-modal sensor suite. The experimental capabilities offered by RealTHASC are demonstrated through three case studies showcasing mixed real/virtual human/robot interactions in diverse domains, leveraging and complementing the benefits of experimentation in simulation and in the real world.

     
    more » « less